Kernel Estimation of Quantile Sensitivities

被引:27
|
作者
Liu, Guangwu [1 ]
Hong, Liu Jeff [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Ind Engn & Logist Management, Hong Kong, Hong Kong, Peoples R China
关键词
quantile; sensitivity analysis; kernel method; simulation; TIME-SERIES; REGRESSION;
D O I
10.1002/nav.20358
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Quantiles, also known as value-at-risks in the financial industry, are important measures of random performances. Quantile sensitivities provide information on how changes in input parameters affect Output quantiles. They are very Useful ill risk management. In this article. we study the estimation of quantile sensitivities using stochastic simulation. We propose a kernel estimator and prove that it is consistent and asymptotically normally distributed for Outputs from both terminating and steady-state simulations. The theoretical analysis and numerical experiments both show that the kernel estimator is more efficient than the hatching estimator of Hong [9]. (C) 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 511-525, 2009
引用
收藏
页码:511 / 525
页数:15
相关论文
共 50 条
  • [31] ASYMPTOTIC NORMALITY OF THE KERNEL QUANTILE ESTIMATOR
    FALK, M
    [J]. ANNALS OF STATISTICS, 1985, 13 (01): : 428 - 433
  • [32] Asymptotics for the linear kernel quantile estimator
    Xuejun Wang
    Yi Wu
    Wei Yu
    Wenzhi Yang
    Shuhe Hu
    [J]. TEST, 2019, 28 : 1144 - 1174
  • [33] Asymptotics for the linear kernel quantile estimator
    Wang, Xuejun
    Wu, Yi
    Yu, Wei
    Yang, Wenzhi
    Hu, Shuhe
    [J]. TEST, 2019, 28 (04) : 1144 - 1174
  • [34] Edgeworth expansion for the kernel quantile estimator
    Maesono, Yoshihiko
    Penev, Spiridon
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (03) : 617 - 644
  • [35] Power consumption interval prediction based on quantile regression neural network and kernel density estimation
    Lv, Haohui
    Chen, Guandi
    Deng, Mingbin
    Tan, Zhiyuan
    Hu, Wen
    [J]. 2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 295 - 300
  • [36] On kernel-based quantile estimation using different stratified sampling schemes with optimal allocation
    Eftekharian, Abbas
    Samawi, Hani
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (05) : 1040 - 1056
  • [37] Smoothing regression quantile by combining k-NN estimation with local linear kernel fitting
    Yu, KM
    [J]. STATISTICA SINICA, 1999, 9 (03) : 759 - 774
  • [38] Nonparametric quantile estimation
    Takeuchi, Ichiro
    Le, Quoc V.
    Sears, Timothy D.
    Smola, Alexander J.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1231 - 1264
  • [39] On quantile estimation by bootstrap
    Brodin, E
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (06) : 1398 - 1406
  • [40] Quantile and histogram estimation
    Chen, EJ
    Kelton, WD
    [J]. WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 451 - 459