Kernel Estimation of Quantile Sensitivities

被引:27
|
作者
Liu, Guangwu [1 ]
Hong, Liu Jeff [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Ind Engn & Logist Management, Hong Kong, Hong Kong, Peoples R China
关键词
quantile; sensitivity analysis; kernel method; simulation; TIME-SERIES; REGRESSION;
D O I
10.1002/nav.20358
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Quantiles, also known as value-at-risks in the financial industry, are important measures of random performances. Quantile sensitivities provide information on how changes in input parameters affect Output quantiles. They are very Useful ill risk management. In this article. we study the estimation of quantile sensitivities using stochastic simulation. We propose a kernel estimator and prove that it is consistent and asymptotically normally distributed for Outputs from both terminating and steady-state simulations. The theoretical analysis and numerical experiments both show that the kernel estimator is more efficient than the hatching estimator of Hong [9]. (C) 2009 Wiley Periodicals, Inc. Naval Research Logistics 56: 511-525, 2009
引用
收藏
页码:511 / 525
页数:15
相关论文
共 50 条
  • [21] A kernel estimator of a conditional quantile
    Xiang, XJ
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1996, 59 (02) : 206 - 216
  • [22] JACKKNIFED KERNEL QUANTILE ESTIMATORS
    MCCUNE, ED
    MCCUNE, SL
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (08) : 2719 - 2725
  • [23] Probability Density Forecasting of Wind Speed Based on Quantile Regression and Kernel Density Estimation
    Zhang, Lei
    Xie, Lun
    Han, Qinkai
    Wang, Zhiliang
    Huang, Chen
    [J]. ENERGIES, 2020, 13 (22)
  • [24] Stepwise Estimation for Multiple Non-Crossing Quantile Regression using Kernel Constraints
    Bang, Sungwan
    Jhun, Myoungshic
    Cho, HyungJun
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2013, 26 (06) : 915 - 922
  • [25] Kernel conditional quantile estimation for stationary processes with application to conditional value-at-risk
    Wu, Wei Biao
    Yu, Keming
    Mitra, Gautam
    [J]. JOURNAL OF FINANCIAL ECONOMETRICS, 2008, 6 (02) : 253 - 270
  • [26] Simultaneous multiple non-crossing quantile regression estimation using kernel constraints
    Liu, Yufeng
    Wu, Yichao
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (02) : 415 - 437
  • [27] Estimation of scale functions to model heteroscedasticity by regularised kernel-based quantile methods
    Hable, R.
    Christmann, A.
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2014, 26 (02) : 219 - 239
  • [28] On kernel smoothing for extremal quantile regression
    Daouia, Abdelaati
    Gardes, Laurent
    Girard, Stephane
    [J]. BERNOULLI, 2013, 19 (5B) : 2557 - 2589
  • [29] Edgeworth expansion for the kernel quantile estimator
    Yoshihiko Maesono
    Spiridon Penev
    [J]. Annals of the Institute of Statistical Mathematics, 2011, 63 : 617 - 644
  • [30] BAHADUR REPRESENTATION OF KERNEL QUANTILE ESTIMATORS
    XIANG, XJ
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1994, 21 (02) : 169 - 178