Estimating Quantile Sensitivities

被引:81
|
作者
Hong, L. Jeff [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Ind Engn & Logist Management, Clear Water Bay, Hong Kong, Peoples R China
关键词
VALUE-AT-RISK; PERTURBATION ANALYSIS; SIMULATION; SYSTEMS;
D O I
10.1287/opre.1080.0531
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Quantiles of a random performance serve as important alternatives to the usual expected value. They are used in the financial industry as measures of risk and in the service industry as measures of service quality. To manage the quantile of a performance, we need to know how changes in the input parameters affect the output quantiles, which are called quantile sensitivities. In this paper, we show that the quantile sensitivities can be written in the form of conditional expectations. Based on the conditional-expectation form, we first propose an infinitesimal-perturbation-analysis (IPA) estimator. The IPA estimator is asymptotically unbiased, but it is not consistent. We then obtain a consistent estimator by dividing data into batches and averaging the IPA estimates of all batches. The estimator satisfies a central limit theorem for the i.i.d. data, and the rate of convergence is strictly slower than n(-1/3). The numerical results show that the estimator works well for practical problems.
引用
收藏
页码:118 / 130
页数:13
相关论文
共 50 条
  • [1] Technical Note-On Estimating Quantile Sensitivities via Infinitesimal Perturbation Analysis
    Jiang, Guangxin
    Fu, Michael C.
    [J]. OPERATIONS RESEARCH, 2015, 63 (02) : 435 - 441
  • [2] Kernel estimation for quantile sensitivities
    Liu, Guangwu
    Hong, L. Jeff
    [J]. PROCEEDINGS OF THE 2007 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2007, : 920 - 927
  • [3] Kernel Estimation of Quantile Sensitivities
    Liu, Guangwu
    Hong, Liu Jeff
    [J]. NAVAL RESEARCH LOGISTICS, 2009, 56 (06) : 511 - 525
  • [4] Conditional Monte Carlo Estimation of Quantile Sensitivities
    Fu, Michael C.
    Hong, L. Jeff
    Hu, Jian-Qiang
    [J]. MANAGEMENT SCIENCE, 2009, 55 (12) : 2019 - 2027
  • [5] Estimating errors in design sensitivities
    Nair, D
    Webb, JP
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (04) : 559 - 562
  • [6] ESTIMATING A QUANTILE OF A SYMMETRIC DISTRIBUTION
    COHEN, A
    LO, SH
    SINGH, K
    [J]. ANNALS OF STATISTICS, 1985, 13 (03): : 1114 - 1128
  • [7] Estimating equivalence with quantile regression
    Cade, Brian S.
    [J]. ECOLOGICAL APPLICATIONS, 2011, 21 (01) : 281 - 289
  • [8] Estimating extreme bivariate quantile regions
    Einmahl, John H. J.
    de Haan, Laurens
    Krajina, Andrea
    [J]. EXTREMES, 2013, 16 (02) : 121 - 145
  • [9] ESTIMATING THE QUANTILE FUNCTION BY BERNSTEIN POLYNOMIALS
    PEREZ, JM
    PALACIN, AF
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 391 - 397
  • [10] Estimating an inflation index by quantile regression
    Blankmeyer, Eric
    [J]. APPLIED ECONOMICS LETTERS, 2012, 19 (02) : 185 - 187