Adaptive Kernel Quantile Regression for Anomaly Detection

被引:0
|
作者
Moriguchi, Hiroyuki [1 ]
Takeuchi, Ichiro [2 ]
Karasuyama, Masayuki [2 ]
Horikawa, Shin-ichi [1 ]
Ohta, Yoshikatsu [1 ]
Kodama, Tetsuji [1 ]
Naruse, Hiroshi [1 ]
机构
[1] Mie Univ, 1577 Kurimamachiya Cho, Tsu, Mie 5148507, Japan
[2] Nagoya Inst Technol, Showa Ku, Nagoya, Aichi 4668555, Japan
关键词
kernel machine; quantile regression and adaptive system;
D O I
10.20965/jaciii.2009.p0230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study a problem of anomaly detection from time series-data. We use kernel quantile regression (KQR) to predict the extreme (such as 0.01 or 0.99) quantiles of the future time-series data distribution. It enables us to tell whether the probability of observing a certain time-series sequence is larger than, say, 1 percent or not. In this paper, we develop an efficient update algorithm of KQR in order to adapt the KQR in on-line manner. We propose a new algorithm that allows us to compute the optimal solution of the KQR when a new training pattern is inserted or deleted. We demonstrate the effectiveness of our methodology through numerical experiment using real-world time-series data.
引用
收藏
页码:230 / 236
页数:7
相关论文
共 50 条
  • [1] Composite kernel quantile regression
    Bang, Sungwan
    Eo, Soo-Heang
    Jhun, Myoungshic
    Cho, Hyung Jun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2228 - 2240
  • [2] Explainable contextual anomaly detection using quantile regression forests
    Zhong Li
    Matthijs van Leeuwen
    Data Mining and Knowledge Discovery, 2023, 37 : 2517 - 2563
  • [3] Structured kernel quantile regression
    Koo, Ja-Yong
    Park, Kwi Wook
    Kim, Byung Won
    Kim, Kwang-Rae
    Park, Changyi
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (01) : 179 - 190
  • [4] Explainable contextual anomaly detection using quantile regression forests
    Li, Zhong
    van Leeuwen, Matthijs
    DATA MINING AND KNOWLEDGE DISCOVERY, 2023, 37 (06) : 2517 - 2563
  • [5] Adaptive quantile regression
    van de Geer, SA
    RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 235 - 250
  • [6] Deep Quantile Regression for Unsupervised Anomaly Detection in Time-Series
    Tambuwal A.I.
    Neagu D.
    SN Computer Science, 2021, 2 (6)
  • [7] An Adaptive Kernel Method for Anomaly Detection in Hyperspectral Imagery
    Mei, Feng
    Zhao, Chunhui
    Hu, Hanjun
    Sun, Yan
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 874 - +
  • [8] Adaptive Anomaly Detection with Kernel Eigenspace Splitting and Merging
    O'Reilly, Colin
    Gluhak, Alexander
    Imran, Muhammad Ali
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2015, 27 (01) : 3 - 16
  • [9] On kernel smoothing for extremal quantile regression
    Daouia, Abdelaati
    Gardes, Laurent
    Girard, Stephane
    BERNOULLI, 2013, 19 (5B) : 2557 - 2589
  • [10] An adaptive algorithm for quantile regression
    Chen, C
    THEORY AND APPLICATION OF RECENT ROBUST METHODS, 2004, : 39 - 48