Adaptive Kernel Quantile Regression for Anomaly Detection

被引:0
|
作者
Moriguchi, Hiroyuki [1 ]
Takeuchi, Ichiro [2 ]
Karasuyama, Masayuki [2 ]
Horikawa, Shin-ichi [1 ]
Ohta, Yoshikatsu [1 ]
Kodama, Tetsuji [1 ]
Naruse, Hiroshi [1 ]
机构
[1] Mie Univ, 1577 Kurimamachiya Cho, Tsu, Mie 5148507, Japan
[2] Nagoya Inst Technol, Showa Ku, Nagoya, Aichi 4668555, Japan
关键词
kernel machine; quantile regression and adaptive system;
D O I
10.20965/jaciii.2009.p0230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study a problem of anomaly detection from time series-data. We use kernel quantile regression (KQR) to predict the extreme (such as 0.01 or 0.99) quantiles of the future time-series data distribution. It enables us to tell whether the probability of observing a certain time-series sequence is larger than, say, 1 percent or not. In this paper, we develop an efficient update algorithm of KQR in order to adapt the KQR in on-line manner. We propose a new algorithm that allows us to compute the optimal solution of the KQR when a new training pattern is inserted or deleted. We demonstrate the effectiveness of our methodology through numerical experiment using real-world time-series data.
引用
收藏
页码:230 / 236
页数:7
相关论文
共 50 条
  • [31] Anomaly Detection Using Local Kernel Density Estimation and Context-Based Regression
    Hu, Weiming
    Gao, Jun
    Li, Bing
    Wu, Ou
    Du, Junping
    Maybank, Stephen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (02) : 218 - 233
  • [32] Adaptive quantile regression with precise risk bounds
    MaoZai Tian
    Ngai Hang Chan
    Science China Mathematics, 2017, 60 : 875 - 896
  • [33] Adaptive sparse group LASSO in quantile regression
    Mendez-Civieta, Alvaro
    Aguilera-Morillo, M. Carmen
    Lillo, Rosa E.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (03) : 547 - 573
  • [34] Adaptive semiparametric M-quantile regression
    Otto-Sobotka, Fabian
    Salvati, Nicola
    Ranalli, Maria Giovanna
    Kneib, Thomas
    ECONOMETRICS AND STATISTICS, 2019, 11 : 116 - 129
  • [35] Adaptive quantile regression with precise risk bounds
    Tian, MaoZai
    Chan, Ngai Hang
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (05) : 875 - 896
  • [36] Adaptive quantile regression with precise risk bounds
    TIAN MaoZai
    CHAN Ngai Hang
    ScienceChina(Mathematics), 2017, 60 (05) : 875 - 896
  • [37] Adaptive sparse group LASSO in quantile regression
    Alvaro Mendez-Civieta
    M. Carmen Aguilera-Morillo
    Rosa E. Lillo
    Advances in Data Analysis and Classification, 2021, 15 : 547 - 573
  • [38] Adaptive fused LASSO in grouped quantile regression
    Ciuperca G.
    Journal of Statistical Theory and Practice, 2017, 11 (1) : 107 - 125
  • [39] SPATIAL CONDITIONAL QUANTILE REGRESSION: WEAK CONSISTENCY OF A KERNEL ESTIMATE
    Dabo-Niang, Sophie
    Kaid, Zoulikha
    Laksaci, Ali
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 57 (04): : 311 - 339
  • [40] Quantile Fuzzy Varying Coefficient Regression based on kernel function
    Khammar, Amir Hamzeh
    Arefi, Mohsen
    Akbari, Mohammad Ghasem
    APPLIED SOFT COMPUTING, 2021, 107