Adaptive Kernel Quantile Regression for Anomaly Detection

被引:0
|
作者
Moriguchi, Hiroyuki [1 ]
Takeuchi, Ichiro [2 ]
Karasuyama, Masayuki [2 ]
Horikawa, Shin-ichi [1 ]
Ohta, Yoshikatsu [1 ]
Kodama, Tetsuji [1 ]
Naruse, Hiroshi [1 ]
机构
[1] Mie Univ, 1577 Kurimamachiya Cho, Tsu, Mie 5148507, Japan
[2] Nagoya Inst Technol, Showa Ku, Nagoya, Aichi 4668555, Japan
关键词
kernel machine; quantile regression and adaptive system;
D O I
10.20965/jaciii.2009.p0230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we study a problem of anomaly detection from time series-data. We use kernel quantile regression (KQR) to predict the extreme (such as 0.01 or 0.99) quantiles of the future time-series data distribution. It enables us to tell whether the probability of observing a certain time-series sequence is larger than, say, 1 percent or not. In this paper, we develop an efficient update algorithm of KQR in order to adapt the KQR in on-line manner. We propose a new algorithm that allows us to compute the optimal solution of the KQR when a new training pattern is inserted or deleted. We demonstrate the effectiveness of our methodology through numerical experiment using real-world time-series data.
引用
收藏
页码:230 / 236
页数:7
相关论文
共 50 条
  • [41] Image denoising by adaptive kernel regression
    Takeda, Hiroyuki
    Farsiu, Sina
    Milanfar, Peyman
    2005 39TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1 AND 2, 2005, : 1660 - 1665
  • [42] ADAPTIVE BANDWIDTH CHOICE FOR KERNEL REGRESSION
    SCHUCANY, WR
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) : 535 - 540
  • [43] Robust Regression for Anomaly Detection
    Wang, Ziyu
    Yang, Jiahai
    Zhang ShiZe
    Li, Chenxi
    2017 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2017,
  • [44] Anomaly Detection With Kernel Preserving Embedding
    Liu, Huawen
    Li, Enhui
    Liu, Xinwang
    Su, Kaile
    Zhang, Shichao
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (05)
  • [45] Kernel Quantile Estimator with ICI Adaptive Bandwidth Selection Technique
    Jie Yu FAN
    Man Lai TANG
    Mao Zai TIAN
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (04) : 710 - 722
  • [46] Kernel quantile estimator with ICI adaptive bandwidth selection technique
    Fan, Jie Yu
    Tang, Man Lai
    Tian, Mao Zai
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (04) : 710 - 722
  • [47] Kernel quantile estimator with ICI adaptive bandwidth selection technique
    Jie Yu Fan
    Man Lai Tang
    Mao Zai Tian
    Acta Mathematica Sinica, English Series, 2014, 30 : 710 - 722
  • [48] Adaptive LASSO model selection in a multiphase quantile regression
    Ciuperca, Gabriela
    STATISTICS, 2016, 50 (05) : 1100 - 1131
  • [49] Quantile-Regression Inference With Adaptive Control of Size
    Escanciano, J. C.
    Goh, S. C.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2019, 114 (527) : 1382 - 1393
  • [50] Adaptive lasso penalised censored composite quantile regression
    Bang, Sungwan
    Cho, Hyungjun
    Jhun, Myoungshic
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 15 (01) : 22 - 46