Anomaly Detection Using Local Kernel Density Estimation and Context-Based Regression

被引:71
|
作者
Hu, Weiming [1 ]
Gao, Jun [1 ]
Li, Bing [1 ]
Wu, Ou [2 ]
Du, Junping [3 ]
Maybank, Stephen [4 ]
机构
[1] Univ Chinese Acad Sci, Natl Lab Pattern Recognit Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300073, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100876, Peoples R China
[4] Birkbeck Coll, Dept Comp Sci & Informat Syst, Malet St, London WC1E 7HX, England
基金
北京市自然科学基金;
关键词
Anomaly detection; Kernel; Estimation; Saliency detection; Visualization; Data models; Computational modeling; local kernel density estimation; weighted neighborhood density; hierarchical context-based local kernel regression; SALIENT OBJECT DETECTION; OUTLIER DETECTION; MODEL; ALGORITHMS;
D O I
10.1109/TKDE.2018.2882404
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current local density-based anomaly detection methods are limited in that the local density estimation and the neighborhood density estimation are not accurate enough for complex and large databases, and the detection performance depends on the size parameter of the neighborhood. In this paper, we propose a new kernel function to estimate samples' local densities and propose a weighted neighborhood density estimation to increase the robustness to changes in the neighborhood size. We further propose a local kernel regression estimator and a hierarchical strategy for combining information from the multiple scale neighborhoods to refine anomaly factors of samples. We apply our general anomaly detection method to image saliency detection by regarding salient pixels in objects as anomalies to the background regions. Local density estimation in the visual feature space and kernel-based saliency score propagation in the image enable the assignment of similar saliency values to homogenous object regions. Experimental results on several benchmark datasets demonstrate that our anomaly detection methods overall outperform several state-of-art anomaly detection methods. The effectiveness of our image saliency detection method is validated by comparison with several state-of-art saliency detection methods.
引用
收藏
页码:218 / 233
页数:16
相关论文
共 50 条
  • [1] Probability Density Estimation Based on Nonparametric Local Kernel Regression
    Han, Min
    Liang, Zhi-ping
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 465 - 472
  • [2] Anomaly Detection of Internet Traffic using Robust Feature Selection based on Kernel Density Estimation
    Leal, Sara Faria
    Rosario Oliveira, M.
    Valadas, Rui
    [J]. 2015 EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS (EUCNC), 2015, : 482 - 486
  • [3] Context-based profiling for anomaly intrusion detection with diagnosis
    Salem, Benferhat
    Karim, Tabia
    [J]. ARES 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON AVAILABILITY, SECURITY AND RELIABILITY, 2008, : 618 - +
  • [4] Anomaly Detection Algorithm Based on Subspace Local Density Estimation
    Zhang, Chunkai
    Yin, Ao
    [J]. INTERNATIONAL JOURNAL OF WEB SERVICES RESEARCH, 2019, 16 (03) : 44 - 58
  • [5] Privacy preserving anomaly detection based on local density estimation
    Zhang, Chunkai
    Yin, Ao
    Zuo, Wei
    Chen, Yingyang
    [J]. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (04) : 3478 - 3497
  • [6] ON JUMP DETECTION IN REGRESSION CURVES USING LOCAL POLYNOMIAL KERNEL ESTIMATION
    Zhang, Bo
    Su, Zhihua
    Qiu, Peihua
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2009, 25 (04): : 505 - 528
  • [7] One Class Process Anomaly Detection Using Kernel Density Estimation Methods
    Lang, Christopher, I
    Sun, Fan-Keng
    Lawler, Bruce
    Dillon, Jack
    Al Dujaili, Ash
    Ruth, John
    Cardillo, Peter
    Alfred, Perry
    Bowers, Alan
    Mckiernan, Adrian
    Boning, Duane S.
    [J]. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2022, 35 (03) : 457 - 469
  • [8] A Saliency Detection Model Based on Local and Global Kernel Density Estimation
    Jing, Huiyun
    He, Xin
    Han, Qi
    Niu, Xiamu
    [J]. NEURAL INFORMATION PROCESSING, PT I, 2011, 7062 : 164 - +
  • [9] Modal regression using kernel density estimation: A review
    Chen, Yen-Chi
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2018, 10 (04):
  • [10] CORNet: Context-Based Ordinal Regression Network for Monocular Depth Estimation
    Meng, Xuyang
    Fan, Chunxiao
    Ming, Yue
    Yu, Hui
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (07) : 4841 - 4853