A Saliency Detection Model Based on Local and Global Kernel Density Estimation

被引:0
|
作者
Jing, Huiyun [1 ]
He, Xin [1 ]
Han, Qi [1 ]
Niu, Xiamu [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, 92 W Da Zhi St, Harbin 150006, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Visual attention; Saliency map; Bayes' theorem; Kernel density estimation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual saliency is an important and indispensable part of visual attention. We present a novel saliency detection model using Bayes' theorem. The proposed model measures the pixel saliency by combining local kernel density estimation of features in center-surround region and global density estimation of features in the entire image. Based on the model, a saliency detection method is presented that extracts the intensity, color and local steering kernel features and employs feature level fusion method to obtain the integrated feature as the corresponding pixel feature. Experimental results show that our model outperforms the current state-of-the-art models on human visual fixation data.
引用
收藏
页码:164 / +
页数:2
相关论文
共 50 条
  • [1] NONPARAMETRIC SALIENCY DETECTION USING KERNEL DENSITY ESTIMATION
    Liu, Zhi
    Xue, Yinzhu
    Shen, Liquan
    Zhang, Zhaoyang
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 253 - 256
  • [2] Deep Network Saliency Detection Based on Global Model and Local Optimization
    Liu F.
    Shen T.
    Lou S.
    Han B.
    Guangxue Xuebao/Acta Optica Sinica, 2017, 37 (12):
  • [3] A Saliency Detection Model Combined Local and Global Features
    Wang, Pin
    Tian, Guohui
    Chen, Huanzhao
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 2863 - 2870
  • [4] Fast and Efficient Saliency Detection Using Sparse Sampling and Kernel Density Estimation
    Tavakoli, Hamed Rezazadegan
    Rahtu, Esa
    Heikkila, Janne
    IMAGE ANALYSIS: 17TH SCANDINAVIAN CONFERENCE, SCIA 2011, 2011, 6688 : 666 - 675
  • [5] Salient region detection based on Local and Global Saliency
    Wang, Peng
    Zhou, Zhi
    Liu, Wei
    Qiao, Hong
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 1546 - 1551
  • [6] A Bayesian model for local smoothing in kernel density estimation
    Mark J. Brewer
    Statistics and Computing, 2000, 10 : 299 - 309
  • [7] A Bayesian model for local smoothing in kernel density estimation
    Brewer, MJ
    STATISTICS AND COMPUTING, 2000, 10 (04) : 299 - 309
  • [8] Saliency Detection via Combining Global Shape and Local Cue Estimation
    Qi, Qiang
    Jian, Muwei
    Yin, Yilong
    Dong, Junyu
    Zhang, Wenyin
    Yu, Hui
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, ISCIDE 2017, 2017, 10559 : 325 - 334
  • [9] Deep Networks for Saliency Detection via Local Estimation and Global Search
    Wang, Lijun
    Lu, Huchuan
    Ruan, Xiang
    Yang, Ming-Hsuan
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 3183 - 3192
  • [10] Anomaly Detection Using Local Kernel Density Estimation and Context-Based Regression
    Hu, Weiming
    Gao, Jun
    Li, Bing
    Wu, Ou
    Du, Junping
    Maybank, Stephen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (02) : 218 - 233