A Saliency Detection Model Based on Local and Global Kernel Density Estimation

被引:0
|
作者
Jing, Huiyun [1 ]
He, Xin [1 ]
Han, Qi [1 ]
Niu, Xiamu [1 ]
机构
[1] Harbin Inst Technol, Dept Comp Sci & Technol, 92 W Da Zhi St, Harbin 150006, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Visual attention; Saliency map; Bayes' theorem; Kernel density estimation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Visual saliency is an important and indispensable part of visual attention. We present a novel saliency detection model using Bayes' theorem. The proposed model measures the pixel saliency by combining local kernel density estimation of features in center-surround region and global density estimation of features in the entire image. Based on the model, a saliency detection method is presented that extracts the intensity, color and local steering kernel features and employs feature level fusion method to obtain the integrated feature as the corresponding pixel feature. Experimental results show that our model outperforms the current state-of-the-art models on human visual fixation data.
引用
收藏
页码:164 / +
页数:2
相关论文
共 50 条
  • [41] A New Outlier Detection Algorithm Based on Kernel Density Estimation for ITS
    Xu, Yiwen
    Xu, Ningbin
    Feng, Xinxin
    2016 IEEE INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2016, : 258 - 262
  • [42] Object detection by clustering-based nonparametric kernel density estimation
    Hu, D.
    Hu, J.
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1867 - 1872
  • [43] An Outlier Detection Algorithm based on KNN-kernel Density Estimation
    Wahid, Abdul
    Rao, Annavarapu Chandra Sekhara
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [44] Moving target detection in reverberating background based on kernel density estimation
    Wang X.
    Cai Z.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2019, 40 (04): : 813 - 819
  • [45] Kernel density estimation and correntropy based background modeling and camera model parameter estimation for underwater video object detection
    Susmita Panda
    Pradipta Kumar Nanda
    Soft Computing, 2021, 25 : 10477 - 10496
  • [46] Kernel density estimation and correntropy based background modeling and camera model parameter estimation for underwater video object detection
    Panda, Susmita
    Nanda, Pradipta Kumar
    SOFT COMPUTING, 2021, 25 (15) : 10477 - 10496
  • [47] Adaptive active contour model based on local bias field estimation and saliency
    Deng, Ming
    Zhou, Zhiheng
    Liu, Guoqi
    Zeng, Delu
    Zhang, Mingyue
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11269 - 11283
  • [48] An Adaptive Kernel Density Estimation for Motion Detection
    Xu, Dongbin
    Liu, Changping
    Huang, Lei
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 613 - 617
  • [49] Clustering based on kernel density estimation: nearest local maximum searching algorithm
    Wang, WJ
    Tan, YX
    Jiang, JH
    Lu, JZ
    Shen, GL
    Yu, RQ
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2004, 72 (01) : 1 - 8
  • [50] Deep learning framework for saliency object detection based on global prior and local context
    Fu, Lihua
    Ding, Haogang
    Li, Cancan
    Wang, Dan
    Feng, Yujia
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (05)