Deep Quantile Regression for Unsupervised Anomaly Detection in Time-Series

被引:0
|
作者
Tambuwal A.I. [1 ]
Neagu D. [1 ]
机构
[1] Faculty of Engineering and Informatics, University of Bradford, Bradford
关键词
Anomaly detection; Deep neural networks; Long short-term memory; Prediction interval; Quantile regression; Time-series;
D O I
10.1007/s42979-021-00866-4
中图分类号
学科分类号
摘要
Time-series anomaly detection receives increasing research interest given the growing number of data-rich application domains. Recent additions to anomaly detection methods in research literature include deep neural networks (DNNs: e.g., RNN, CNN, and Autoencoder). The nature and performance of these algorithms in sequence analysis enable them to learn hierarchical discriminative features and time-series temporal nature. However, their performance is affected by usually assuming a Gaussian distribution on the prediction error, which is either ranked, or threshold to label data instances as anomalous or not. An exact parametric distribution is often not directly relevant in many applications though. This will potentially produce faulty decisions from false anomaly predictions due to high variations in data interpretation. The expectations are to produce outputs characterized by a level of confidence. Thus, implementations need the Prediction Interval (PI) that quantify the level of uncertainty associated with the DNN point forecasts, which helps in making better-informed decision and mitigates against false anomaly alerts. An effort has been made in reducing false anomaly alerts through the use of quantile regression for identification of anomalies, but it is limited to the use of quantile interval to identify uncertainties in the data. In this paper, an improve time-series anomaly detection method called deep quantile regression anomaly detection (DQR-AD) is proposed. The proposed method go further to used quantile interval (QI) as anomaly score and compare it with threshold to identify anomalous points in time-series data. The tests run of the proposed method on publicly available anomaly benchmark datasets demonstrate its effective performance over other methods that assumed Gaussian distribution on the prediction or reconstruction cost for detection of anomalies. This shows that our method is potentially less sensitive to data distribution than existing approaches. © 2021, The Author(s).
引用
收藏
相关论文
共 50 条
  • [1] Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals
    Zhang, Yuxin
    Chen, Yiqiang
    Wang, Jindong
    Pan, Zhiwen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (02) : 2118 - 2132
  • [2] Denoising Architecture for Unsupervised Anomaly Detection in Time-Series
    Skaf, Wadie
    Horvath, Tomas
    NEW TRENDS IN DATABASE AND INFORMATION SYSTEMS, ADBIS 2022, 2022, 1652 : 178 - 187
  • [3] Learning Robust Deep State Space for Unsupervised Anomaly Detection in Contaminated Time-Series
    Li, Longyuan
    Yan, Junchi
    Wen, Qingsong
    Jin, Yaohui
    Yang, Xiaokang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (06) : 6058 - 6072
  • [4] A Novel Multivariate Time-Series Anomaly Detection Approach Using an Unsupervised Deep Neural Network
    Zhao, Peihai
    Chang, Xiaoyan
    Wang, Mimi
    IEEE ACCESS, 2021, 9 : 109025 - 109041
  • [5] A novel multivariate time-series anomaly detection approach using an unsupervised deep neural network
    Zhao, Peihai
    Chang, Xiaoyan
    Wang, Mimi
    IEEE Access, 2021, 9 : 109025 - 109041
  • [6] FluxEV: A Fast and Effective Unsupervised Framework for Time-Series Anomaly Detection
    Li, Jia
    Di, Shimin
    Shen, Yanyan
    Chen, Lei
    WSDM '21: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2021, : 824 - 832
  • [7] Unsupervised Anomaly Detection Approach for Time-Series in Multi-Domains Using Deep Reconstruction Error
    Amarbayasgalan, Tsatsral
    Van Huy Pham
    Theera-Umpon, Nipon
    Keun Ho Ryu
    SYMMETRY-BASEL, 2020, 12 (08):
  • [8] Time-Series Deep Learning Anomaly Detection for Particle Accelerators
    Marcato, Davide
    Bortolato, Damiano
    Martinelli, Valentina
    Savarese, Giovanni
    Susto, Gian Antonio
    IFAC PAPERSONLINE, 2023, 56 (02): : 1566 - 1571
  • [9] Characteristic-Aware Time-Series Representation Learning for Unsupervised Anomaly Detection
    Wang, Yujing (yujwang@pku.edu.cn), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [10] Few-shot time-series anomaly detection with unsupervised domain adaptation
    Li, Hongbo
    Zheng, Wenli
    Tang, Feilong
    Zhu, Yanmin
    Huang, Jielong
    INFORMATION SCIENCES, 2023, 649