A note on the extension of Ricci flow

被引:0
|
作者
Guoqiang Wu
Jiaogen Zhang
机构
[1] Zhejiang Sci-Tech University,School of Science
[2] University of Science and Technology of China,School of Mathematical Sciences
来源
Geometriae Dedicata | 2022年 / 216卷
关键词
Ricci flow; Regularity scale; Pseudolocality theorem; Primary 53C21; Secondary 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study Ricci flow on n dimensional closed manifold such that the scalar curvature is bounded on M×[0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\times [0, T)$$\end{document}. We prove that the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Riemannian curvature tenor can be controlled by the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor. As a corollary, we obtain the Ricci flow can be extended over T when n is odd if both the scalar curvature and the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor are uniformly bounded.
引用
收藏
相关论文
共 50 条
  • [1] A note on the extension of Ricci flow
    Wu, Guoqiang
    Zhang, Jiaogen
    GEOMETRIAE DEDICATA, 2022, 216 (03)
  • [2] Remarks on the Extension of the Ricci Flow
    Fei He
    Journal of Geometric Analysis, 2014, 24 : 81 - 91
  • [3] Remarks on the Extension of the Ricci Flow
    He, Fei
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 81 - 91
  • [4] On the extension of the Harmonic Ricci flow
    Cheng, Liang
    Zhu, Anqiang
    GEOMETRIAE DEDICATA, 2013, 164 (01) : 179 - 185
  • [5] On the Extension of Ricci Harmonic Flow
    Wu, Guoqiang
    Zheng, Yu
    RESULTS IN MATHEMATICS, 2020, 75 (02)
  • [6] On the extension of the Harmonic Ricci flow
    Liang Cheng
    Anqiang Zhu
    Geometriae Dedicata, 2013, 164 : 179 - 185
  • [7] On the Extension of Ricci Harmonic Flow
    Guoqiang Wu
    Yu Zheng
    Results in Mathematics, 2020, 75
  • [8] A NOTE ON CONFORMAL RICCI FLOW
    Lu, Peng
    Qing, Jie
    Zheng, Yu
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 268 (02) : 413 - 434
  • [9] A note on Ricci flow with Ricci curvature bounded below
    Chen, Xiuxiong
    Yuan, Fang
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 726 : 29 - 44
  • [10] A note on Ricci flow and optimal transportation
    Brendle, Simon
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (01) : 249 - 258