A note on the extension of Ricci flow

被引:0
|
作者
Guoqiang Wu
Jiaogen Zhang
机构
[1] Zhejiang Sci-Tech University,School of Science
[2] University of Science and Technology of China,School of Mathematical Sciences
来源
Geometriae Dedicata | 2022年 / 216卷
关键词
Ricci flow; Regularity scale; Pseudolocality theorem; Primary 53C21; Secondary 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study Ricci flow on n dimensional closed manifold such that the scalar curvature is bounded on M×[0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\times [0, T)$$\end{document}. We prove that the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Riemannian curvature tenor can be controlled by the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor. As a corollary, we obtain the Ricci flow can be extended over T when n is odd if both the scalar curvature and the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor are uniformly bounded.
引用
收藏
相关论文
共 50 条
  • [21] A note on blowup limits in 3d Ricci flow
    Choi, Beomjun
    Haslhofer, Robert
    MATHEMATICAL RESEARCH LETTERS, 2022, 29 (05) : 1377 - 1386
  • [22] A note on the triviality of gradient solitons of the Ricci-Bourguignon flow
    Cunha, Antonio W.
    Silva, Antonio N., Jr.
    De Lima, Eudes L.
    De Lima, Henrique F.
    ARCHIV DER MATHEMATIK, 2023, 120 (01) : 89 - 98
  • [23] A note on Ricci solitons
    S. E. Stepanov
    V. N. Shelepova
    Mathematical Notes, 2009, 86
  • [24] A note on Ricci solitons
    Deshmukh, Sharief
    Alodan, Haila
    Al-Sodais, Hana
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2011, 16 (01): : 48 - 55
  • [25] A note on Ricci signatures
    Chen, Dezhong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (01) : 273 - 278
  • [26] A note on Ricci solitons
    Stepanov, Sergey E.
    Shelepova, V. N.
    MATHEMATICAL NOTES, 2009, 86 (3-4) : 447 - 450
  • [27] A Note on Ricci Solitons
    Deshmukh, Sharief
    Alsodais, Hana
    SYMMETRY-BASEL, 2020, 12 (02):
  • [28] A NOTE ON COMPACT KAHLER-RICCI FLOW WITH POSITIVE BISECTIONAL CURVATURE
    Cao, Huai-Dong
    Zhu, Meng
    MATHEMATICAL RESEARCH LETTERS, 2009, 16 (5-6) : 935 - 939
  • [29] Ricci Flow and Ricci Limit Spaces
    Topping, Peter M.
    GEOMETRIC ANALYSIS, 2020, 2263 : 79 - 112
  • [30] A NOTE ON CONICAL KAHLER-RICCI FLOW ON MINIMAL ELLIPTIC KAHLER SURFACES
    Zhang, Yashan
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (01) : 169 - 176