A note on the extension of Ricci flow

被引:0
|
作者
Guoqiang Wu
Jiaogen Zhang
机构
[1] Zhejiang Sci-Tech University,School of Science
[2] University of Science and Technology of China,School of Mathematical Sciences
来源
Geometriae Dedicata | 2022年 / 216卷
关键词
Ricci flow; Regularity scale; Pseudolocality theorem; Primary 53C21; Secondary 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study Ricci flow on n dimensional closed manifold such that the scalar curvature is bounded on M×[0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\times [0, T)$$\end{document}. We prove that the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Riemannian curvature tenor can be controlled by the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor. As a corollary, we obtain the Ricci flow can be extended over T when n is odd if both the scalar curvature and the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor are uniformly bounded.
引用
收藏
相关论文
共 50 条
  • [31] A NOTE ON THE HITCHIN-THORPE INEQUALITY AND RICCI FLOW ON 4-MANIFOLDS
    Zhang, Yuguang
    Zhang, Zhenlei
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (05) : 1777 - 1783
  • [32] A note on almost Ricci solitons
    Sharief Deshmukh
    Hana Al-Sodais
    Analysis and Mathematical Physics, 2020, 10
  • [33] A note on almost Ricci solitons
    Deshmukh, Sharief
    Al-Sodais, Hana
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [34] A note on the Cotton flow and the Ricci flow for three-manifolds, and the Hořava-Lifshitz gravity
    Cartas-Fuentevilla, R.
    Herrera-Aguilar, A.
    Calvario-Acocal, J. L. A.
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (09):
  • [35] Comparison Geometry for an Extension of Ricci Tensor
    Azami, Shahroud
    Fatemi, Seyyed Hamed
    Kashani, Seyyed Mohammad Bagher
    RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [36] Comparison Geometry for an Extension of Ricci Tensor
    Shahroud Azami
    Seyyed Hamed Fatemi
    Seyyed Mohammad Bagher Kashani
    Results in Mathematics, 2021, 76
  • [37] A note on rigidity of the almost Ricci soliton
    Abdênago Barros
    José N. Gomes
    Ernani Ribeiro
    Archiv der Mathematik, 2013, 100 : 481 - 490
  • [38] On the Uniqueness of Ricci Flow
    Man-Chun Lee
    The Journal of Geometric Analysis, 2019, 29 : 3098 - 3112
  • [39] Characterizations of the Ricci flow
    Haslhofer, Robert
    Naber, Aaron
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (05) : 1269 - 1302
  • [40] Simplicial Ricci Flow
    Warner A. Miller
    Jonathan R. McDonald
    Paul M. Alsing
    David X. Gu
    Shing-Tung Yau
    Communications in Mathematical Physics, 2014, 329 : 579 - 608