In this paper we study Ricci flow on n dimensional closed manifold such that the scalar curvature is bounded on M×[0,T)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$M\times [0, T)$$\end{document}. We prove that the Ln2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^\frac{n}{2}$$\end{document} norm of Riemannian curvature tenor can be controlled by the Ln2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor. As a corollary, we obtain the Ricci flow can be extended over T when n is odd if both the scalar curvature and the Ln2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor are uniformly bounded.
机构:
Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla Pue 72570, MexicoUniv Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla Pue 72570, Mexico
Cartas-Fuentevilla, R.
Herrera-Aguilar, A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla Pue 72570, MexicoUniv Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla Pue 72570, Mexico
Herrera-Aguilar, A.
Calvario-Acocal, J. L. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Autonoma Benito Juarez Oaxaca, Escuela Ciencias, Oaxaca De Juarez 68120, Oaxaca, MexicoUniv Autonoma Puebla, Inst Fis, Apartado Postal J-48, Puebla Pue 72570, Mexico