A note on the extension of Ricci flow

被引:0
|
作者
Guoqiang Wu
Jiaogen Zhang
机构
[1] Zhejiang Sci-Tech University,School of Science
[2] University of Science and Technology of China,School of Mathematical Sciences
来源
Geometriae Dedicata | 2022年 / 216卷
关键词
Ricci flow; Regularity scale; Pseudolocality theorem; Primary 53C21; Secondary 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study Ricci flow on n dimensional closed manifold such that the scalar curvature is bounded on M×[0,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M\times [0, T)$$\end{document}. We prove that the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Riemannian curvature tenor can be controlled by the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor. As a corollary, we obtain the Ricci flow can be extended over T when n is odd if both the scalar curvature and the Ln2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\frac{n}{2}$$\end{document} norm of Weyl curvature tenor are uniformly bounded.
引用
收藏
相关论文
共 50 条
  • [41] Simplicial Ricci Flow
    Miller, Warner A.
    McDonald, Jonathan R.
    Alsing, Paul M.
    Gu, David X.
    Yau, Shing-Tung
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 329 (02) : 579 - 608
  • [42] A MECHANICS FOR THE RICCI FLOW
    Abraham, S.
    Fernandez De Cordoba, P.
    Isidro, Jose M.
    Santander, J. L. G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (05) : 759 - 767
  • [43] A note on rigidity of the almost Ricci soliton
    Barros, Abdenago
    Gomes, Jose N.
    Ribeiro, Ernani, Jr.
    ARCHIV DER MATHEMATIK, 2013, 100 (05) : 481 - 490
  • [44] On the Uniqueness of Ricci Flow
    Lee, Man-Chun
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (04) : 3098 - 3112
  • [45] THE RICCI FLOW FOR NILMANIFOLDS
    Payne, Tracy L.
    JOURNAL OF MODERN DYNAMICS, 2010, 4 (01) : 65 - 90
  • [46] A Note on Kahler-Ricci Soliton
    Chen, Xiuxiong
    Sun, Song
    Tian, Gang
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (17) : 3328 - 3336
  • [47] Ricci flow with Ricci curvature and volume bounded below
    Hallgren, Max
    MATHEMATISCHE ANNALEN, 2024, 390 (02) : 2633 - 2706
  • [48] Singular Ricci Solitons and Their Stability under the Ricci Flow
    Alexakis, Spyros
    Chen, Dezhong
    Fournodavlos, Grigorios
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 40 (12) : 2123 - 2172
  • [49] RICCI LOWER BOUND FOR KAHLER-RICCI FLOW
    Zhang, Zhou
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (02)
  • [50] Stability of compact Ricci solitons under Ricci flow
    Vaghef, Mina
    Razavi, Asadollah
    TURKISH JOURNAL OF MATHEMATICS, 2015, 39 (04) : 490 - 500