In this short paper, we prove that if the Ricci curvature is uniformly bounded under the Harmonic Ricci flow on complete manifolds for time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${t\in [0,T)}$$\end{document}, then the Harmonic Ricci flow can be extended past the time T.