On the extension of the Harmonic Ricci flow

被引:0
|
作者
Liang Cheng
Anqiang Zhu
机构
[1] Huazhong Normal University,Department of Mathematics and Statistics
[2] Wuhan University,Department of Mathematics and Statistics
来源
Geometriae Dedicata | 2013年 / 164卷
关键词
Harmonic Ricci flow; Blow up; 35K15; 35K55; 53A04;
D O I
暂无
中图分类号
学科分类号
摘要
In this short paper, we prove that if the Ricci curvature is uniformly bounded under the Harmonic Ricci flow on complete manifolds for time \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t\in [0,T)}$$\end{document}, then the Harmonic Ricci flow can be extended past the time T.
引用
收藏
页码:179 / 185
页数:6
相关论文
共 50 条
  • [1] On the extension of the Harmonic Ricci flow
    Cheng, Liang
    Zhu, Anqiang
    GEOMETRIAE DEDICATA, 2013, 164 (01) : 179 - 185
  • [2] On the Extension of Ricci Harmonic Flow
    Wu, Guoqiang
    Zheng, Yu
    RESULTS IN MATHEMATICS, 2020, 75 (02)
  • [3] On the Extension of Ricci Harmonic Flow
    Guoqiang Wu
    Yu Zheng
    Results in Mathematics, 2020, 75
  • [4] Remarks on the Extension of the Ricci Flow
    Fei He
    Journal of Geometric Analysis, 2014, 24 : 81 - 91
  • [5] A note on the extension of Ricci flow
    Guoqiang Wu
    Jiaogen Zhang
    Geometriae Dedicata, 2022, 216
  • [6] Remarks on the Extension of the Ricci Flow
    He, Fei
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 81 - 91
  • [7] A note on the extension of Ricci flow
    Wu, Guoqiang
    Zhang, Jiaogen
    GEOMETRIAE DEDICATA, 2022, 216 (03)
  • [8] Harmonic Spinors in the Ricci Flow
    Baldauf, Julius
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
  • [9] RICCI FLOW COUPLED WITH HARMONIC MAP FLOW
    Mueller, Reto
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2012, 45 (01): : 101 - 142
  • [10] On Gradient Solitons of the Ricci–Harmonic Flow
    Hong Xin GUO
    Robert PHILIPOWSKI
    Anton THALMAIER
    ActaMathematicaSinica, 2015, 31 (11) : 1798 - 1804