首页
学术期刊
论文检测
AIGC检测
热点
更多
数据
Remarks on the Extension of the Ricci Flow
被引:0
|
作者
:
Fei He
论文数:
0
引用数:
0
h-index:
0
机构:
University of California,Department of Mathematics
Fei He
机构
:
[1]
University of California,Department of Mathematics
来源
:
Journal of Geometric Analysis
|
2014年
/ 24卷
关键词
:
Extension of Ricci flow;
Blow-up method;
Optimal Sobolev inequalities;
Subcritical quantities;
53C44;
D O I
:
暂无
中图分类号
:
学科分类号
:
摘要
:
We present two new conditions to extend the Ricci flow on a compact manifold over a finite time, which are improvements of some known extension theorems.
引用
收藏
页码:81 / 91
页数:10
相关论文
共 50 条
[1]
Remarks on the Extension of the Ricci Flow
He, Fei
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
He, Fei
JOURNAL OF GEOMETRIC ANALYSIS,
2014,
24
(01)
: 81
-
91
[2]
Remarks on Kahler Ricci Flow
Chen, Xiuxiong
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Wisconsin, Dept Math, Madison, WI 53706 USA
Univ Wisconsin, Dept Math, Madison, WI 53706 USA
Chen, Xiuxiong
Wang, Bing
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Wisconsin, Dept Math, Madison, WI 53706 USA
Princeton Univ, Dept Math, Princeton, NJ 08544 USA
Univ Wisconsin, Dept Math, Madison, WI 53706 USA
Wang, Bing
JOURNAL OF GEOMETRIC ANALYSIS,
2010,
20
(02)
: 335
-
353
[3]
A note on the extension of Ricci flow
Guoqiang Wu
论文数:
0
引用数:
0
h-index:
0
机构:
Zhejiang Sci-Tech University,School of Science
Guoqiang Wu
Jiaogen Zhang
论文数:
0
引用数:
0
h-index:
0
机构:
Zhejiang Sci-Tech University,School of Science
Jiaogen Zhang
Geometriae Dedicata,
2022,
216
[4]
A note on the extension of Ricci flow
Wu, Guoqiang
论文数:
0
引用数:
0
h-index:
0
机构:
Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
Wu, Guoqiang
Zhang, Jiaogen
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
Zhang, Jiaogen
GEOMETRIAE DEDICATA,
2022,
216
(03)
[5]
On the extension of the Harmonic Ricci flow
Cheng, Liang
论文数:
0
引用数:
0
h-index:
0
机构:
Huazhong Normal Univ, Dept Math & Stat, Wuhan 430079, Peoples R China
Huazhong Normal Univ, Dept Math & Stat, Wuhan 430079, Peoples R China
Cheng, Liang
论文数:
引用数:
h-index:
机构:
Zhu, Anqiang
GEOMETRIAE DEDICATA,
2013,
164
(01)
: 179
-
185
[6]
On the Extension of Ricci Harmonic Flow
Wu, Guoqiang
论文数:
0
引用数:
0
h-index:
0
机构:
Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
Wu, Guoqiang
Zheng, Yu
论文数:
0
引用数:
0
h-index:
0
机构:
East China Normal Univ, Sch Math Sci, Shanghai, Peoples R China
Zhejiang Sci Tech Univ, Sch Sci, Hangzhou 310018, Peoples R China
Zheng, Yu
RESULTS IN MATHEMATICS,
2020,
75
(02)
[7]
On the extension of the Harmonic Ricci flow
Liang Cheng
论文数:
0
引用数:
0
h-index:
0
机构:
Huazhong Normal University,Department of Mathematics and Statistics
Liang Cheng
Anqiang Zhu
论文数:
0
引用数:
0
h-index:
0
机构:
Huazhong Normal University,Department of Mathematics and Statistics
Anqiang Zhu
Geometriae Dedicata,
2013,
164
: 179
-
185
[8]
On the Extension of Ricci Harmonic Flow
Guoqiang Wu
论文数:
0
引用数:
0
h-index:
0
机构:
Zhejiang Sci-Tech University,School of Science
Guoqiang Wu
Yu Zheng
论文数:
0
引用数:
0
h-index:
0
机构:
Zhejiang Sci-Tech University,School of Science
Yu Zheng
Results in Mathematics,
2020,
75
[9]
Remarks on Kähler Ricci Flow
Xiuxiong Chen
论文数:
0
引用数:
0
h-index:
0
机构:
University of Wisconsin–Madison,Department of Mathematics
Xiuxiong Chen
Bing Wang
论文数:
0
引用数:
0
h-index:
0
机构:
University of Wisconsin–Madison,Department of Mathematics
Bing Wang
Journal of Geometric Analysis,
2010,
20
: 335
-
353
[10]
Remarks on Hamilton's Compactness Theorem for Ricci flow
Topping, Peter M.
论文数:
0
引用数:
0
h-index:
0
机构:
Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
Topping, Peter M.
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,
2014,
692
: 173
-
191
←
1
2
3
4
5
→