Remarks on the Extension of the Ricci Flow

被引:0
|
作者
Fei He
机构
[1] University of California,Department of Mathematics
来源
关键词
Extension of Ricci flow; Blow-up method; Optimal Sobolev inequalities; Subcritical quantities; 53C44;
D O I
暂无
中图分类号
学科分类号
摘要
We present two new conditions to extend the Ricci flow on a compact manifold over a finite time, which are improvements of some known extension theorems.
引用
收藏
页码:81 / 91
页数:10
相关论文
共 50 条
  • [1] Remarks on the Extension of the Ricci Flow
    He, Fei
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 81 - 91
  • [2] Remarks on Kahler Ricci Flow
    Chen, Xiuxiong
    Wang, Bing
    JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (02) : 335 - 353
  • [3] A note on the extension of Ricci flow
    Guoqiang Wu
    Jiaogen Zhang
    Geometriae Dedicata, 2022, 216
  • [4] A note on the extension of Ricci flow
    Wu, Guoqiang
    Zhang, Jiaogen
    GEOMETRIAE DEDICATA, 2022, 216 (03)
  • [5] On the extension of the Harmonic Ricci flow
    Cheng, Liang
    Zhu, Anqiang
    GEOMETRIAE DEDICATA, 2013, 164 (01) : 179 - 185
  • [6] On the Extension of Ricci Harmonic Flow
    Wu, Guoqiang
    Zheng, Yu
    RESULTS IN MATHEMATICS, 2020, 75 (02)
  • [7] On the extension of the Harmonic Ricci flow
    Liang Cheng
    Anqiang Zhu
    Geometriae Dedicata, 2013, 164 : 179 - 185
  • [8] On the Extension of Ricci Harmonic Flow
    Guoqiang Wu
    Yu Zheng
    Results in Mathematics, 2020, 75
  • [9] Remarks on Kähler Ricci Flow
    Xiuxiong Chen
    Bing Wang
    Journal of Geometric Analysis, 2010, 20 : 335 - 353
  • [10] Remarks on Hamilton's Compactness Theorem for Ricci flow
    Topping, Peter M.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 692 : 173 - 191