Nonlinear expansions in reproducing kernel Hilbert spaces

被引:0
|
作者
Mashreghi, Javad [1 ]
Verreault, William [1 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Toeplitz operators; Oscillatory expansion; Blaschke product; Model spaces;
D O I
10.1007/s43670-023-00069-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an expansion scheme in reproducing kernel Hilbert spaces, which as a special case covers the celebrated Blaschke unwinding series expansion for analytic functions. The expansion scheme is further generalized to cover Hardy spaces Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>p$$\end{document}, 1<p<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}, viewed as Banach spaces of analytic functions with bounded evaluation functionals. In this setting a dichotomy is more transparent: depending on the multipliers used, the expansion of f is an element of Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in H<^>p$$\end{document} converges either to f in Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>p$$\end{document}-norm or to its projection onto a model space generated by the corresponding multipliers. Some explicit instances of the general expansion scheme, which are not covered by the previously known methods, are also discussed.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On sparse interpolation in reproducing kernel Hilbert spaces
    Dodd, TJ
    Harrison, RF
    PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1962 - 1967
  • [32] Frames, their relatives and reproducing kernel Hilbert spaces
    Speckbacher, Michael
    Balazs, Peter
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (01)
  • [33] Remarks on interpolation in reproducing kernel Hilbert spaces
    Bolotnikov, V
    Rodman, L
    HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 559 - 576
  • [34] Metamorphosis of images in reproducing kernel Hilbert spaces
    Richardson, Casey L.
    Younes, Laurent
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (03) : 573 - 603
  • [35] ON THE INCLUSION RELATION OF REPRODUCING KERNEL HILBERT SPACES
    Zhang, Haizhang
    Zhao, Liang
    ANALYSIS AND APPLICATIONS, 2013, 11 (02)
  • [36] Quantile regression in reproducing kernel Hilbert spaces
    Li, Youjuan
    Liu, Yufeng
    Zhu, Ji
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 255 - 268
  • [37] Symmetric Operators and Reproducing Kernel Hilbert Spaces
    R. T. W. Martin
    Complex Analysis and Operator Theory, 2010, 4 : 845 - 880
  • [38] Koopman spectra in reproducing kernel Hilbert spaces
    Das, Suddhasattwa
    Giannakis, Dimitrios
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (02) : 573 - 607
  • [39] Adaptive Estimation in Reproducing Kernel Hilbert Spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5678 - 5683
  • [40] Interpolation for multipliers on reproducing kernel Hilbert spaces
    Bolotnikov, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) : 1373 - 1383