Symmetric Operators and Reproducing Kernel Hilbert Spaces

被引:0
|
作者
R. T. W. Martin
机构
[1] University of California-Berkeley,Department of Mathematics
来源
关键词
Self-adjoint extensions of symmetric operators; Reproducing kernel Hilbert spaces; Spectra of symmetric operators; Kramer sampling property; 47B25 (symmetric and self-adjoint operators (unbounded)); 46E22 (Hilbert spaces with reproducing kernels); 47B32 (operators in reproducing kernel Hilbert spaces); 47A10 (general theory of linear operators; spectrum, resolvent);
D O I
暂无
中图分类号
学科分类号
摘要
We establish the following sufficient operator-theoretic condition for a subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subset L^2 (\mathbb{R}, d\nu)}$$\end{document} to be a reproducing kernel Hilbert space with the Kramer sampling property. If the compression of the unitary group U(t) := eitM generated by the self-adjoint operator M, of multiplication by the independent variable, to S is a semigroup for t ≥ 0, if M has a densely defined, symmetric, simple and regular restriction to S, with deficiency indices (1, 1), and if ν belongs to a suitable large class of Borel measures, then S must be a reproducing kernel Hilbert space with the Kramer sampling property. Furthermore, there is an isometry which acts as multiplication by a measurable function which takes S onto a reproducing kernel Hilbert space of functions which are analytic in a region containing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} , and are meromorphic in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} . In the process of establishing this result, several new results on the spectra and spectral representations of symmetric operators are proven. It is further observed that there is a large class of de Branges functions E, for which the de Branges spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}(E) \subset L^{2}(\mathbb{R}, |E(x)|^{-2}dx)}$$\end{document} are examples of subspaces satisfying the conditions of this result.
引用
收藏
页码:845 / 880
页数:35
相关论文
共 50 条