Symmetric Operators and Reproducing Kernel Hilbert Spaces

被引:0
|
作者
R. T. W. Martin
机构
[1] University of California-Berkeley,Department of Mathematics
来源
关键词
Self-adjoint extensions of symmetric operators; Reproducing kernel Hilbert spaces; Spectra of symmetric operators; Kramer sampling property; 47B25 (symmetric and self-adjoint operators (unbounded)); 46E22 (Hilbert spaces with reproducing kernels); 47B32 (operators in reproducing kernel Hilbert spaces); 47A10 (general theory of linear operators; spectrum, resolvent);
D O I
暂无
中图分类号
学科分类号
摘要
We establish the following sufficient operator-theoretic condition for a subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S \subset L^2 (\mathbb{R}, d\nu)}$$\end{document} to be a reproducing kernel Hilbert space with the Kramer sampling property. If the compression of the unitary group U(t) := eitM generated by the self-adjoint operator M, of multiplication by the independent variable, to S is a semigroup for t ≥ 0, if M has a densely defined, symmetric, simple and regular restriction to S, with deficiency indices (1, 1), and if ν belongs to a suitable large class of Borel measures, then S must be a reproducing kernel Hilbert space with the Kramer sampling property. Furthermore, there is an isometry which acts as multiplication by a measurable function which takes S onto a reproducing kernel Hilbert space of functions which are analytic in a region containing \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document} , and are meromorphic in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}}$$\end{document} . In the process of establishing this result, several new results on the spectra and spectral representations of symmetric operators are proven. It is further observed that there is a large class of de Branges functions E, for which the de Branges spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}(E) \subset L^{2}(\mathbb{R}, |E(x)|^{-2}dx)}$$\end{document} are examples of subspaces satisfying the conditions of this result.
引用
收藏
页码:845 / 880
页数:35
相关论文
共 50 条
  • [41] Metamorphosis of images in reproducing kernel Hilbert spaces
    Richardson, Casey L.
    Younes, Laurent
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (03) : 573 - 603
  • [42] Frames, their relatives and reproducing kernel Hilbert spaces
    Speckbacher, Michael
    Balazs, Peter
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (01)
  • [43] ON THE INCLUSION RELATION OF REPRODUCING KERNEL HILBERT SPACES
    Zhang, Haizhang
    Zhao, Liang
    [J]. ANALYSIS AND APPLICATIONS, 2013, 11 (02)
  • [44] Quantile regression in reproducing kernel Hilbert spaces
    Li, Youjuan
    Liu, Yufeng
    Zhu, Ji
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 255 - 268
  • [45] Koopman spectra in reproducing kernel Hilbert spaces
    Das, Suddhasattwa
    Giannakis, Dimitrios
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (02) : 573 - 607
  • [46] Adaptive Estimation in Reproducing Kernel Hilbert Spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5678 - 5683
  • [47] Nonlinear expansions in reproducing kernel Hilbert spaces
    Mashreghi, Javad
    Verreault, William
    [J]. SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2023, 21 (02):
  • [48] Interpolation for multipliers on reproducing kernel Hilbert spaces
    Bolotnikov, V
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) : 1373 - 1383
  • [49] Boundedness of composition operators on reproducing kernel Hilbert spaces with analytic positive definite functions
    Ikeda, Masahiro
    Ishikawa, Isao
    Sawano, Yoshihiro
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 511 (01)
  • [50] Reproducing kernel Hilbert spaces via sampling in discrete spaces
    Foroutan, Mohammadreza
    Asadi, Raheleh
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (03): : 1805 - 1818