Nonlinear expansions in reproducing kernel Hilbert spaces

被引:0
|
作者
Mashreghi, Javad [1 ]
Verreault, William [1 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Toeplitz operators; Oscillatory expansion; Blaschke product; Model spaces;
D O I
10.1007/s43670-023-00069-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an expansion scheme in reproducing kernel Hilbert spaces, which as a special case covers the celebrated Blaschke unwinding series expansion for analytic functions. The expansion scheme is further generalized to cover Hardy spaces Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>p$$\end{document}, 1<p<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}, viewed as Banach spaces of analytic functions with bounded evaluation functionals. In this setting a dichotomy is more transparent: depending on the multipliers used, the expansion of f is an element of Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in H<^>p$$\end{document} converges either to f in Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>p$$\end{document}-norm or to its projection onto a model space generated by the corresponding multipliers. Some explicit instances of the general expansion scheme, which are not covered by the previously known methods, are also discussed.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [1] Sampling Expansions in Reproducing Kernel Hilbert and Banach Spaces
    Han, Deguang
    Nashed, M. Zuhair
    Sun, Qiyu
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (9-10) : 971 - 987
  • [2] Reproducing kernel hilbert spaces
    Seddighi, K.
    Iranian Journal of Science & Technology, 1993, 17 (03):
  • [3] Sampling Expansions and Interpolation in Unitarily Translation Invariant Reproducing Kernel Hilbert Spaces
    Cornelis V.M. van der Mee
    M.Z. Nashed
    Sebastiano Seatzu
    Advances in Computational Mathematics, 2003, 19 : 355 - 372
  • [4] Sampling expansions and interpolation in unitarily translation invariant reproducing kernel Hilbert spaces
    van der Mee, CVM
    Nashed, MZ
    Seatzu, S
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2003, 19 (04) : 355 - 372
  • [5] Pasting Reproducing Kernel Hilbert Spaces
    Sawano, Yoshihiro
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 401 - 407
  • [6] On isomorphism of reproducing kernel Hilbert spaces
    V. V. Napalkov
    V. V. Napalkov
    Doklady Mathematics, 2017, 95 : 270 - 272
  • [7] A Primer on Reproducing Kernel Hilbert Spaces
    Manton, Jonathan H.
    Amblard, Pierre-Olivier
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (1-2): : 1 - 126
  • [8] Noncommutative reproducing kernel Hilbert spaces
    Ball, Joseph A.
    Marx, Gregory
    Vinnikov, Victor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (07) : 1844 - 1920
  • [9] RELATIVE REPRODUCING KERNEL HILBERT SPACES
    Alpay, Daniel
    Jorgensen, Palle
    Volok, Dan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) : 3889 - 3895
  • [10] On reproducing kernel Hilbert spaces of polynomials
    Li, XJ
    MATHEMATISCHE NACHRICHTEN, 1997, 185 : 115 - 148