Nonlinear expansions in reproducing kernel Hilbert spaces

被引:0
|
作者
Mashreghi, Javad [1 ]
Verreault, William [1 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Toeplitz operators; Oscillatory expansion; Blaschke product; Model spaces;
D O I
10.1007/s43670-023-00069-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce an expansion scheme in reproducing kernel Hilbert spaces, which as a special case covers the celebrated Blaschke unwinding series expansion for analytic functions. The expansion scheme is further generalized to cover Hardy spaces Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>p$$\end{document}, 1<p<infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p<\infty $$\end{document}, viewed as Banach spaces of analytic functions with bounded evaluation functionals. In this setting a dichotomy is more transparent: depending on the multipliers used, the expansion of f is an element of Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f \in H<^>p$$\end{document} converges either to f in Hp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>p$$\end{document}-norm or to its projection onto a model space generated by the corresponding multipliers. Some explicit instances of the general expansion scheme, which are not covered by the previously known methods, are also discussed.
引用
下载
收藏
页数:17
相关论文
共 50 条
  • [11] On isomorphism of reproducing kernel Hilbert spaces
    Napalkov, V. V.
    Napalkov, V. V., Jr.
    DOKLADY MATHEMATICS, 2017, 95 (03) : 270 - 272
  • [12] Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 869 - 896
  • [13] Nonlinear functional models for functional responses in reproducing kernel Hilbert spaces
    Lian, Heng
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2007, 35 (04): : 597 - 606
  • [14] Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces
    Parag Bobade
    Suprotim Majumdar
    Savio Pereira
    Andrew J. Kurdila
    John B. Ferris
    Advances in Computational Mathematics, 2019, 45 : 869 - 896
  • [15] OPERATOR INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Yamanci, Ulas
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 204 - 211
  • [16] Metamorphosis of images in reproducing kernel Hilbert spaces
    Casey L. Richardson
    Laurent Younes
    Advances in Computational Mathematics, 2016, 42 : 573 - 603
  • [17] Factorizations of Kernels and Reproducing Kernel Hilbert Spaces
    Rani Kumari
    Jaydeb Sarkar
    Srijan Sarkar
    Dan Timotin
    Integral Equations and Operator Theory, 2017, 87 : 225 - 244
  • [18] Symmetric Operators and Reproducing Kernel Hilbert Spaces
    Martin, R. T. W.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2010, 4 (04) : 845 - 880
  • [19] Factorizations of Kernels and Reproducing Kernel Hilbert Spaces
    Kumari, Rani
    Sarkar, Jaydeb
    Sarkar, Srijan
    Timotin, Dan
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 87 (02) : 225 - 244
  • [20] Distance Functions for Reproducing Kernel Hilbert Spaces
    Arcozzi, N.
    Rochberg, R.
    Sawyer, E.
    Wick, B. D.
    FUNCTION SPACES IN MODERN ANALYSIS, 2011, 547 : 25 - +