Metamorphosis of images in reproducing kernel Hilbert spaces

被引:0
|
作者
Casey L. Richardson
Laurent Younes
机构
[1] Johns Hopkins University,Applied Physics Laboratory
[2] Johns Hopkins University,Center for Imaging Science and Department of Applied Mathematics and Statistics
来源
关键词
Groups of diffeomorphisms; Shape analysis; Deformable templates; Metamorphosis; Adjoint methods; 58E50;
D O I
暂无
中图分类号
学科分类号
摘要
Metamorphosis is a method for diffeomorphic matching of shapes, with many potential applications for anatomical shape comparison in medical imagery, a problem which is central to the field of computational anatomy. An important tool for the practical application of metamorphosis is a numerical method based on shooting from the initial momentum, as this would enable the use of statistical methods based on this momentum, as well as the estimation of templates from hyper-templates using morphing. In this paper we introduce a shooting method, in the particular case of morphing images that lie in a reproducing kernel Hilbert space (RKHS). We derive the relevant shooting equations from a Lagrangian frame of reference, present the details of the numerical approach, and illustrate the method through morphing of some simple images.
引用
收藏
页码:573 / 603
页数:30
相关论文
共 50 条
  • [1] Metamorphosis of images in reproducing kernel Hilbert spaces
    Richardson, Casey L.
    Younes, Laurent
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (03) : 573 - 603
  • [2] Reproducing kernel hilbert spaces
    Seddighi, K.
    Iranian Journal of Science & Technology, 1993, 17 (03):
  • [3] Pasting Reproducing Kernel Hilbert Spaces
    Sawano, Yoshihiro
    NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 401 - 407
  • [4] On isomorphism of reproducing kernel Hilbert spaces
    V. V. Napalkov
    V. V. Napalkov
    Doklady Mathematics, 2017, 95 : 270 - 272
  • [5] A Primer on Reproducing Kernel Hilbert Spaces
    Manton, Jonathan H.
    Amblard, Pierre-Olivier
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (1-2): : 1 - 126
  • [6] Noncommutative reproducing kernel Hilbert spaces
    Ball, Joseph A.
    Marx, Gregory
    Vinnikov, Victor
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (07) : 1844 - 1920
  • [7] RELATIVE REPRODUCING KERNEL HILBERT SPACES
    Alpay, Daniel
    Jorgensen, Palle
    Volok, Dan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) : 3889 - 3895
  • [8] On reproducing kernel Hilbert spaces of polynomials
    Li, XJ
    MATHEMATISCHE NACHRICHTEN, 1997, 185 : 115 - 148
  • [9] On isomorphism of reproducing kernel Hilbert spaces
    Napalkov, V. V.
    Napalkov, V. V., Jr.
    DOKLADY MATHEMATICS, 2017, 95 (03) : 270 - 272
  • [10] OPERATOR INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Yamanci, Ulas
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 204 - 211