Noncommutative reproducing kernel Hilbert spaces

被引:29
|
作者
Ball, Joseph A. [1 ]
Marx, Gregory [1 ]
Vinnikov, Victor [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
Reproducing kernel Hilbert space; Contractive multiplier; Free noncommutative function; Completely positive and completely bounded maps; OPERATOR; CORRESPONDENCES; INTERPOLATION; PRODUCT;
D O I
10.1016/j.jfa.2016.06.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The theory of positive kernels and associated reproducing kernel Hilbert spaces, especially in the setting of holomorphic functions, has been an important tool for the last several decades in a number of areas of complex analysis and operator theory. An interesting generalization of holomorphic functions, namely free noncommutative functions (e.g., functions of square-matrix arguments of arbitrary size satisfying additional natural compatibility conditions), is now an active area of research, with motivation and applications from a variety of areas (e.g., noncommutative functional calculus, free probability, and optimization theory in linear systems engineering). The purpose of this article is to develop a theory of positive kernels and associated reproducing kernel Hilbert spaces for the setting of free noncommutative function theory. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1844 / 1920
页数:77
相关论文
共 50 条
  • [1] Pasting Reproducing Kernel Hilbert Spaces
    Sawano, Yoshihiro
    [J]. NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 401 - 407
  • [2] A Primer on Reproducing Kernel Hilbert Spaces
    Manton, Jonathan H.
    Amblard, Pierre-Olivier
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (1-2): : 1 - 126
  • [3] On isomorphism of reproducing kernel Hilbert spaces
    V. V. Napalkov
    V. V. Napalkov
    [J]. Doklady Mathematics, 2017, 95 : 270 - 272
  • [4] RELATIVE REPRODUCING KERNEL HILBERT SPACES
    Alpay, Daniel
    Jorgensen, Palle
    Volok, Dan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) : 3889 - 3895
  • [5] On reproducing kernel Hilbert spaces of polynomials
    Li, XJ
    [J]. MATHEMATISCHE NACHRICHTEN, 1997, 185 : 115 - 148
  • [6] On isomorphism of reproducing kernel Hilbert spaces
    Napalkov, V. V.
    Napalkov, V. V., Jr.
    [J]. DOKLADY MATHEMATICS, 2017, 95 (03) : 270 - 272
  • [7] OPERATOR INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Yamanci, Ulas
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2022, 71 (01): : 204 - 211
  • [8] Metamorphosis of images in reproducing kernel Hilbert spaces
    Casey L. Richardson
    Laurent Younes
    [J]. Advances in Computational Mathematics, 2016, 42 : 573 - 603
  • [9] Symmetric Operators and Reproducing Kernel Hilbert Spaces
    Martin, R. T. W.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2010, 4 (04) : 845 - 880
  • [10] Factorizations of Kernels and Reproducing Kernel Hilbert Spaces
    Kumari, Rani
    Sarkar, Jaydeb
    Sarkar, Srijan
    Timotin, Dan
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2017, 87 (02) : 225 - 244