Adaptive Estimation in Reproducing Kernel Hilbert Spaces

被引:0
|
作者
Bobade, Parag
Majumdar, Suprotim
Pereira, Savio
Kurdila, Andrew J.
Ferris, John B.
机构
关键词
PARAMETER; IDENTIFICATION; EXCITATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel framework for the study of adaptive or online estimation problems for a common class of nonlinear systems governed by ordinary differential equations (ODEs) on R-d. In contrast to most conventional strategies for ODEs, the approach here embeds the estimate of the unknown nonlinear function appearing in the plant in a reproducing kernel Hilbert space (RKHS), H. The nonlinear adaptive estimation problem is then cast as a time-varying estimation problem in the product space R-d x H of finite dimensional state estimates and infinite dimensional estimates of the unknown function. The adaptive estimation problem thereby constitutes a type of distributed parameter system, even though the original system is a collection of ODEs. The unknown function that lies in the RKHS is the distributed parameter. This paper derives (1) the sufficient conditions for the existence and uniqueness of solutions, (2) the stability and convergence of the state estimation error, and (3) the convergence of finite dimensional approximate solutions to the solution on the infinite dimensional state space. The new formulation provides a succinct and direct way of rigorously posing adaptive estimation problems using bases that are amenable to scattered approximation. A numerical example on adaptive estimation of road or terrain maps is presented to illustrate the convergence of the function estimates derived in this paper.
引用
收藏
页码:5678 / 5683
页数:6
相关论文
共 50 条
  • [1] Adaptive estimation of external fields in reproducing kernel Hilbert spaces
    Guo, Jia
    Kepler, Michael E.
    Tej Paruchuri, Sai
    Wang, Hoaran
    Kurdila, Andrew J.
    Stilwell, Daniel J.
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (08) : 1931 - 1957
  • [2] Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 869 - 896
  • [3] Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces
    Parag Bobade
    Suprotim Majumdar
    Savio Pereira
    Andrew J. Kurdila
    John B. Ferris
    [J]. Advances in Computational Mathematics, 2019, 45 : 869 - 896
  • [4] Multi-agent adaptive estimation with consensus in reproducing kernel Hilbert spaces
    Bobade, Parag
    Panagou, Dimitra
    Kurdila, Andrew J.
    [J]. 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), 2019, : 572 - 577
  • [5] Estimation in Reproducing Kernel Hilbert Spaces With Dependent Data
    Sancetta, Alessio
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (03) : 1782 - 1795
  • [6] Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces
    Tuia, Devis
    Munoz-Mari, Jordi
    Luis Rojo-Alvarez, Jose
    Martinez-Ramon, Manel
    Camps-Valls, Gustavo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (07) : 1413 - 1419
  • [7] Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces
    Yukawa, Masahiro
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (22) : 6037 - 6048
  • [8] Adaptive Control via Embedding in Reproducing Kernel Hilbert Spaces
    Kurdila, Andrew
    Lei, Yu
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3384 - 3389
  • [9] Pasting Reproducing Kernel Hilbert Spaces
    Sawano, Yoshihiro
    [J]. NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 401 - 407
  • [10] A Primer on Reproducing Kernel Hilbert Spaces
    Manton, Jonathan H.
    Amblard, Pierre-Olivier
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (1-2): : 1 - 126