Multi-agent adaptive estimation with consensus in reproducing kernel Hilbert spaces

被引:0
|
作者
Bobade, Parag [1 ]
Panagou, Dimitra [1 ]
Kurdila, Andrew J. [2 ]
机构
[1] Univ Michigan, Aerosp Engn, Ann Arbor, MI 48109 USA
[2] Virginia Tech, Mech Engn, Blacksburg, VA USA
关键词
D O I
10.23919/ecc.2019.8796214
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a framework for online adaptive estimation of unknown or uncertain systems of nonlinear ordinary differential equation (ODEs) that characterize a multiagent sensor network. This paper extends recent results in [2], [36] and here the nonlinear ODEs are embedded in the real, vector-valued reproducing kernel Hilbert space (RKHS) H := H-N with H a real, scalar RKHS. Each agent casts its local representation of the unknown function f as a member of the RKHS H. The result defines a distributed parameter system that governs the state estimates and estimates of the unknown function. The convergence of state estimates is proven along similar lines to that encountered in conventional adaptive estimation for systems of unknown nonlinear ODEs. The analysis of the parameter estimates, which is studied by an evolution in Euclidean space in conventional methods, now concerns the convergence of error functions in the RKHS. We show that the convergence of the function estimates to the unknown function in the RKHS is guaranteed provided a newly introduced persistency of excitation (PE) condition holds. This PE condition is defined on functions defined over a subset Omega that contains the trajectory of the true dynamic system. It can be viewed as an extension of the notion of partial persistence of excitation to the RKHS embedding framework.
引用
收藏
页码:572 / 577
页数:6
相关论文
共 50 条
  • [1] Adaptive Estimation in Reproducing Kernel Hilbert Spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5678 - 5683
  • [2] Adaptive estimation of external fields in reproducing kernel Hilbert spaces
    Guo, Jia
    Kepler, Michael E.
    Tej Paruchuri, Sai
    Wang, Hoaran
    Kurdila, Andrew J.
    Stilwell, Daniel J.
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (08) : 1931 - 1957
  • [3] Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2019, 45 (02) : 869 - 896
  • [4] Adaptive estimation for nonlinear systems using reproducing kernel Hilbert spaces
    Parag Bobade
    Suprotim Majumdar
    Savio Pereira
    Andrew J. Kurdila
    John B. Ferris
    [J]. Advances in Computational Mathematics, 2019, 45 : 869 - 896
  • [5] Learning Theory with Consensus in Reproducing Kernel Hilbert Spaces
    Deng, Zhaoda
    Gregory, Jessica
    Kurdila, Andrew
    [J]. 2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 1400 - 1405
  • [6] Adaptive consensus estimation of multi-agent systems
    Demetriou, Michael A.
    Nestinger, Stephen S.
    [J]. 2011 50TH IEEE CONFERENCE ON DECISION AND CONTROL AND EUROPEAN CONTROL CONFERENCE (CDC-ECC), 2011, : 354 - 359
  • [7] Estimation in Reproducing Kernel Hilbert Spaces With Dependent Data
    Sancetta, Alessio
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (03) : 1782 - 1795
  • [8] Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces
    Tuia, Devis
    Munoz-Mari, Jordi
    Luis Rojo-Alvarez, Jose
    Martinez-Ramon, Manel
    Camps-Valls, Gustavo
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (07) : 1413 - 1419
  • [9] Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces
    Yukawa, Masahiro
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (22) : 6037 - 6048
  • [10] Adaptive Control via Embedding in Reproducing Kernel Hilbert Spaces
    Kurdila, Andrew
    Lei, Yu
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3384 - 3389