Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces

被引:6
|
作者
Tuia, Devis [1 ]
Munoz-Mari, Jordi [2 ]
Luis Rojo-Alvarez, Jose [3 ]
Martinez-Ramon, Manel [4 ]
Camps-Valls, Gustavo [2 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Univ Valencia, Image Proc Lab, Valencia 46980, Spain
[3] Univ Rey Juan Carlos Madrid, Dept Teoria Senal & Comunicac, Fuenlabrada 28943, Spain
[4] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
关键词
Adaptive; autoregressive and moving-average; filter; kernel methods; recursive; SUPPORT VECTOR MACHINES; IDENTIFICATION;
D O I
10.1109/TNNLS.2013.2293871
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the gamma-filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time series prediction, complex nonlinear system identification, and adaptive antenna array processing demonstrate the potential of the approach for scenarios where recursivity and nonlinearity have to be readily combined.
引用
收藏
页码:1413 / 1419
页数:7
相关论文
共 50 条
  • [1] EXPLICIT RECURSIVITY INTO REPRODUCING KERNEL HILBERT SPACES
    Tuia, Devis
    Camps-Valls, Gustavo
    Martinez-Ramon, Manel
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4148 - 4151
  • [2] THE EXPLICIT FORMULAS FOR REPRODUCING KERNEL OF SOME HILBERT SPACES
    Moradi, E.
    Babolian, E.
    Javadi, S.
    [J]. MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) : 1041 - 1053
  • [3] Adaptive Estimation in Reproducing Kernel Hilbert Spaces
    Bobade, Parag
    Majumdar, Suprotim
    Pereira, Savio
    Kurdila, Andrew J.
    Ferris, John B.
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 5678 - 5683
  • [4] EXPLICIT SIGNAL TO NOISE RATIO IN REPRODUCING KERNEL HILBERT SPACES
    Gomez-Chova, Luis
    Nielsen, Allan A.
    Camps-Valls, Gustavo
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3570 - 3573
  • [5] An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels
    Steinwart, Ingo
    Hush, Don
    Scovel, Clint
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) : 4635 - 4643
  • [6] Adaptive estimation of external fields in reproducing kernel Hilbert spaces
    Guo, Jia
    Kepler, Michael E.
    Tej Paruchuri, Sai
    Wang, Hoaran
    Kurdila, Andrew J.
    Stilwell, Daniel J.
    [J]. INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (08) : 1931 - 1957
  • [7] Adaptive Learning in Cartesian Product of Reproducing Kernel Hilbert Spaces
    Yukawa, Masahiro
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (22) : 6037 - 6048
  • [8] Adaptive Control via Embedding in Reproducing Kernel Hilbert Spaces
    Kurdila, Andrew
    Lei, Yu
    [J]. 2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3384 - 3389
  • [9] Pasting Reproducing Kernel Hilbert Spaces
    Sawano, Yoshihiro
    [J]. NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 401 - 407
  • [10] A Primer on Reproducing Kernel Hilbert Spaces
    Manton, Jonathan H.
    Amblard, Pierre-Olivier
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (1-2): : 1 - 126