Explicit Recursive and Adaptive Filtering in Reproducing Kernel Hilbert Spaces

被引:6
|
作者
Tuia, Devis [1 ]
Munoz-Mari, Jordi [2 ]
Luis Rojo-Alvarez, Jose [3 ]
Martinez-Ramon, Manel [4 ]
Camps-Valls, Gustavo [2 ]
机构
[1] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[2] Univ Valencia, Image Proc Lab, Valencia 46980, Spain
[3] Univ Rey Juan Carlos Madrid, Dept Teoria Senal & Comunicac, Fuenlabrada 28943, Spain
[4] Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
关键词
Adaptive; autoregressive and moving-average; filter; kernel methods; recursive; SUPPORT VECTOR MACHINES; IDENTIFICATION;
D O I
10.1109/TNNLS.2013.2293871
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This brief presents a methodology to develop recursive filters in reproducing kernel Hilbert spaces. Unlike previous approaches that exploit the kernel trick on filtered and then mapped samples, we explicitly define the model recursivity in the Hilbert space. For that, we exploit some properties of functional analysis and recursive computation of dot products without the need of preimaging or a training dataset. We illustrate the feasibility of the methodology in the particular case of the gamma-filter, which is an infinite impulse response filter with controlled stability and memory depth. Different algorithmic formulations emerge from the signal model. Experiments in chaotic and electroencephalographic time series prediction, complex nonlinear system identification, and adaptive antenna array processing demonstrate the potential of the approach for scenarios where recursivity and nonlinearity have to be readily combined.
引用
收藏
页码:1413 / 1419
页数:7
相关论文
共 50 条
  • [31] Riccati inequalities and reproducing kernel Hilbert spaces
    Dubi, Chen
    Dym, Harry
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 458 - 482
  • [32] Linear dynamics in reproducing kernel Hilbert spaces
    Mundayadan, Aneesh
    Sarkar, Jaydeb
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2020, 159
  • [33] VARIOUS INEQUALITIES IN REPRODUCING KERNEL HILBERT SPACES
    Nguyen Du Vi Nhan
    Dinh Thanh Duc
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2013, 17 (01): : 221 - 237
  • [34] On sparse interpolation in reproducing kernel Hilbert spaces
    Dodd, TJ
    Harrison, RF
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1962 - 1967
  • [35] Radial kernels and their reproducing kernel Hilbert spaces
    Scovel, Clint
    Hush, Don
    Steinwart, Ingo
    Theiler, James
    [J]. JOURNAL OF COMPLEXITY, 2010, 26 (06) : 641 - 660
  • [36] ON APPROXIMATION BY SPHERICAL REPRODUCING KERNEL HILBERT SPACES
    Zhixiang Chen (Shaoxing College of Arts and Sciences
    [J]. Analysis in Theory and Applications, 2007, (04) : 325 - 333
  • [37] Remarks on interpolation in reproducing kernel Hilbert spaces
    Bolotnikov, V
    Rodman, L
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2004, 30 (02): : 559 - 576
  • [38] Metamorphosis of images in reproducing kernel Hilbert spaces
    Richardson, Casey L.
    Younes, Laurent
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2016, 42 (03) : 573 - 603
  • [39] Frames, their relatives and reproducing kernel Hilbert spaces
    Speckbacher, Michael
    Balazs, Peter
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (01)
  • [40] Koopman spectra in reproducing kernel Hilbert spaces
    Das, Suddhasattwa
    Giannakis, Dimitrios
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 49 (02) : 573 - 607