Adaptive Estimation in Reproducing Kernel Hilbert Spaces

被引:0
|
作者
Bobade, Parag
Majumdar, Suprotim
Pereira, Savio
Kurdila, Andrew J.
Ferris, John B.
机构
关键词
PARAMETER; IDENTIFICATION; EXCITATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a novel framework for the study of adaptive or online estimation problems for a common class of nonlinear systems governed by ordinary differential equations (ODEs) on R-d. In contrast to most conventional strategies for ODEs, the approach here embeds the estimate of the unknown nonlinear function appearing in the plant in a reproducing kernel Hilbert space (RKHS), H. The nonlinear adaptive estimation problem is then cast as a time-varying estimation problem in the product space R-d x H of finite dimensional state estimates and infinite dimensional estimates of the unknown function. The adaptive estimation problem thereby constitutes a type of distributed parameter system, even though the original system is a collection of ODEs. The unknown function that lies in the RKHS is the distributed parameter. This paper derives (1) the sufficient conditions for the existence and uniqueness of solutions, (2) the stability and convergence of the state estimation error, and (3) the convergence of finite dimensional approximate solutions to the solution on the infinite dimensional state space. The new formulation provides a succinct and direct way of rigorously posing adaptive estimation problems using bases that are amenable to scattered approximation. A numerical example on adaptive estimation of road or terrain maps is presented to illustrate the convergence of the function estimates derived in this paper.
引用
收藏
页码:5678 / 5683
页数:6
相关论文
共 50 条
  • [41] The Feichtinger Conjecture and Reproducing Kernel Hilbert Spaces
    Lata, Sneh
    Paulsen, Vern
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (04) : 1303 - 1317
  • [42] EXPLICIT RECURSIVITY INTO REPRODUCING KERNEL HILBERT SPACES
    Tuia, Devis
    Camps-Valls, Gustavo
    Martinez-Ramon, Manel
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4148 - 4151
  • [43] Adaptive Constrained Learning in Reproducing Kernel Hilbert Spaces: The Robust Beamforming Case
    Slavakis, Konstantinos
    Theodoridis, Sergios
    Yamada, Isao
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (12) : 4744 - 4764
  • [44] Interpolation for multipliers on reproducing kernel Hilbert spaces
    Bolotnikov, V
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) : 1373 - 1383
  • [45] Adaptive Multiregression in Reproducing Kernel Hilbert Spaces: The Multiaccess MIMO Channel Case
    Slavakis, Konstantinos
    Bouboulis, Pantelis
    Theodoridis, Sergios
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (02) : 260 - 276
  • [46] Adaptive Decompositions in Monogenic Reproducing Kernel Hilbert Spaces of Paley–Wiener Type
    Pei Dang
    Weixiong Mai
    Tao Qian
    [J]. Complex Analysis and Operator Theory, 2022, 16
  • [47] Nonlinear expansions in reproducing kernel Hilbert spaces
    Mashreghi, Javad
    Verreault, William
    [J]. SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2023, 21 (02):
  • [48] Estimation of minimum measure sets in reproducing Kernel Hilbert Spaces and applications.
    Davy, Manuel
    Desobry, Frederic
    Canu, Stephane
    [J]. 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 3119 - 3122
  • [49] Reproducing kernel Hilbert spaces via sampling in discrete spaces
    Mohammadreza Foroutan
    Raheleh Asadi
    [J]. The Journal of Analysis, 2023, 31 : 1805 - 1818
  • [50] Reproducing kernel Hilbert spaces via sampling in discrete spaces
    Foroutan, Mohammadreza
    Asadi, Raheleh
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (03): : 1805 - 1818