Tangential Center Problem for a Family of Non-generic Hamiltonians

被引:0
|
作者
Jessie Pontigo-Herrera
机构
[1] Universidad Nacional Autónoma de México (UNAM),Instituto de Matemáticas
[2] Université de Bourgogne,Institut de Mathématiques de Bourgogne, U.M.R. 5584 du C.N.R.S.
关键词
Abelian integrals; Tangential center problem; Monodromy; 34M35; 34C08; 14D05;
D O I
暂无
中图分类号
学科分类号
摘要
The tangential center problem was solved by Yu. S. Ilyashenko in the generic case Mat Sbornik (New Series), 78, 120, 3,360–373, (1969). With the aim of having well-understood models of non-generic Hamiltonians, we consider here a family of non-generic Hamiltonians, whose Hamiltonian is of the form F=∏fj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F=\prod f_{j}$\end{document}, where fj are real polynomials of degree ≥ 1. For this family, the genericity assumption of transversality at infinity fails and the coincidence of the critical values for different critical points is allowed. We consider some geometric conditions on these polynomials in order to compute the orbit under monodromy of their vanishing cycles. Under those conditions, we provide a solution of the tangential center problem for this family.
引用
收藏
页码:597 / 622
页数:25
相关论文
共 50 条
  • [41] The relevance of non-generic events in scale space models
    Kuijper, A
    Florack, LMJ
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 57 (01) : 67 - 84
  • [42] On the non-generic Tzitzeica-Johnson's Configuration
    Boskoff, Wladimir G.
    Barcanescu, Serban
    Bobe, Alexandru
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (02): : 21 - 26
  • [43] ANALYTIC INTEGRABILITY AROUND A NILPOTENT SINGULARITY: THE NON-GENERIC CASE
    Algaba, Antonio
    Diaz, Maria
    Garcia, Cristobal
    Gine, Jaume
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (01) : 407 - 423
  • [44] On the sensitivity of non-generic bifurcation of non-linear normal modes
    Pak, C. H.
    Choi, Y. S.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2007, 42 (07) : 973 - 980
  • [45] On searching generic properties of non-generic phenomena: An approach to bioinformatic theory formation
    Hogeweg, P
    ARTIFICIAL LIFE VI, 1998, : 285 - 294
  • [46] Bifurcation of perturbations of non-generic closed self-shrinkers
    Lin, Zhengjiang
    Sun, Ao
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2022, 14 (04) : 979 - 999
  • [47] Problems Identified in the Package Leaflets of the Portuguese Non-Generic Medicines
    Pires, Carla
    Cavaco, Afonso
    Vigario, Marina
    ACTA MEDICA PORTUGUESA, 2015, 28 (01): : 21 - 28
  • [48] On the 1d Cubic NLS with a Non-generic Potential
    Chen, Gong
    Pusateri, Fabio
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
  • [49] On the 1d Cubic NLS with a Non-generic Potential
    Gong Chen
    Fabio Pusateri
    Communications in Mathematical Physics, 2024, 405
  • [50] Analysis of Effectiveness of Lyapunov Control for Non-Generic Quantum States
    Wang, Xiaoting
    Schirmer, Sophie G.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (06) : 1406 - 1411