Tangential Center Problem for a Family of Non-generic Hamiltonians

被引:0
|
作者
Jessie Pontigo-Herrera
机构
[1] Universidad Nacional Autónoma de México (UNAM),Instituto de Matemáticas
[2] Université de Bourgogne,Institut de Mathématiques de Bourgogne, U.M.R. 5584 du C.N.R.S.
关键词
Abelian integrals; Tangential center problem; Monodromy; 34M35; 34C08; 14D05;
D O I
暂无
中图分类号
学科分类号
摘要
The tangential center problem was solved by Yu. S. Ilyashenko in the generic case Mat Sbornik (New Series), 78, 120, 3,360–373, (1969). With the aim of having well-understood models of non-generic Hamiltonians, we consider here a family of non-generic Hamiltonians, whose Hamiltonian is of the form F=∏fj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F=\prod f_{j}$\end{document}, where fj are real polynomials of degree ≥ 1. For this family, the genericity assumption of transversality at infinity fails and the coincidence of the critical values for different critical points is allowed. We consider some geometric conditions on these polynomials in order to compute the orbit under monodromy of their vanishing cycles. Under those conditions, we provide a solution of the tangential center problem for this family.
引用
收藏
页码:597 / 622
页数:25
相关论文
共 50 条
  • [11] Effects of generic versus non-generic feedback on motor learning in children
    Chiviacowsky, Suzete
    Wulf, Gabriele
    Drews, Ricardo
    JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2013, 35 : S24 - S24
  • [12] THE ANALYTIC SVD: ON THE NON-GENERIC POINTS ON THE PATH
    Janovska, Dasa
    Janovsky, Vladimir
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 : 70 - 86
  • [13] The spectral dimension of non-generic branched polymers
    Wheater, JF
    Correia, J
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 783 - 785
  • [14] Existence of canards under non-generic conditions
    Feng Xie
    Maoan Han
    Chinese Annals of Mathematics, Series B, 2009, 30 : 239 - 250
  • [15] Generic and non-generic features of chaotic systems: billiards and nuclei
    Richter, A
    INTERNATIONAL SYMPOSIUM ON NUCLEAR STRUCTURE PHYSICS: CELEBRATING THE CAREER OF PETER VON BRENTANO, 2001, : 197 - 224
  • [16] Non-generic couplings in supersymmetric standard models
    Buchbinder, Evgeny I.
    Constantin, Andrei
    Lukas, Andre
    PHYSICS LETTERS B, 2015, 748 : 251 - 254
  • [17] Quantum ergodicity for a class of non-generic systems
    Asadi, P.
    Bakhshinezhad, F.
    Rezakhani, A. T.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (05)
  • [18] Canard solutions at non-generic turning points
    De Maesschalck, P
    Dumortier, F
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (05) : 2291 - 2334
  • [19] Existence of Canards under Non-generic Conditions
    Feng XIE* Maoan HAN** *Department of Applied Mathematics
    Division of Compu-tational Science
    Chinese Annals of Mathematics, 2009, 30 (03) : 239 - 250
  • [20] Existence of Canards under Non-generic Conditions
    Xie, Feng
    Han, Maoan
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (03) : 239 - 250