Tangential Center Problem for a Family of Non-generic Hamiltonians

被引:0
|
作者
Jessie Pontigo-Herrera
机构
[1] Universidad Nacional Autónoma de México (UNAM),Instituto de Matemáticas
[2] Université de Bourgogne,Institut de Mathématiques de Bourgogne, U.M.R. 5584 du C.N.R.S.
关键词
Abelian integrals; Tangential center problem; Monodromy; 34M35; 34C08; 14D05;
D O I
暂无
中图分类号
学科分类号
摘要
The tangential center problem was solved by Yu. S. Ilyashenko in the generic case Mat Sbornik (New Series), 78, 120, 3,360–373, (1969). With the aim of having well-understood models of non-generic Hamiltonians, we consider here a family of non-generic Hamiltonians, whose Hamiltonian is of the form F=∏fj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F=\prod f_{j}$\end{document}, where fj are real polynomials of degree ≥ 1. For this family, the genericity assumption of transversality at infinity fails and the coincidence of the critical values for different critical points is allowed. We consider some geometric conditions on these polynomials in order to compute the orbit under monodromy of their vanishing cycles. Under those conditions, we provide a solution of the tangential center problem for this family.
引用
收藏
页码:597 / 622
页数:25
相关论文
共 50 条
  • [21] Abelian Integrals and Non-generic Turning Points
    Renato Huzak
    David Rojas
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [22] The Relevance of Non-Generic Events in Scale Space Models
    Arjan Kuijper
    Luc M.J. Florack
    International Journal of Computer Vision, 2004, 57 : 67 - 84
  • [23] Effects of Generic versus Non-Generic Feedback on Motor Learning in Children
    Chiviacowsky, Suzete
    Drews, Ricardo
    PLOS ONE, 2014, 9 (02):
  • [24] Rational convexity of non-generic immersed Lagrangian submanifolds
    Julien Duval
    Damien Gayet
    Mathematische Annalen, 2009, 345 : 25 - 29
  • [25] Generic and non-generic conditions for the perception of surface shape from texture
    Todd, JT
    Oomes, AHJ
    VISION RESEARCH, 2002, 42 (07) : 837 - 850
  • [26] The influence of generic versus non-generic feedback on motor performance in children
    Chiviacowsky, Suzete
    Wulf, Gabriele
    Drews, Ricardo
    JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2012, 34 : S77 - S77
  • [27] The monodromy problem and the tangential center problem
    Christopher, C.
    Mardesic, P.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (01) : 22 - 35
  • [28] Non-generic twinning concentrations for a class of active alloys
    Pitteri, M
    Zanzotto, G
    APPLIED AND INDUSTRIAL MATHEMATICS, VENICE-2, 1998, 2000, : 245 - 257
  • [29] Nanomedicines: a significant share of the non-generic market by 2010
    Eaton, M. A. W.
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2004, 56 : S93 - S93
  • [30] The relevance of non-generic events in scale space models
    Kuijper, A
    Florack, L
    COMPUTER VISON - ECCV 2002, PT 1, 2002, 2350 : 190 - 204