Abelian Integrals and Non-generic Turning Points

被引:0
|
作者
Renato Huzak
David Rojas
机构
[1] Hasselt University,Departament d’Informàtica, Matemàtica Aplicada i Estadística
[2] Campus Diepenbeek,undefined
[3] Universitat de Girona,undefined
关键词
Abelian integrals; Chebyshev systems; Planar turning points; 34E15; 34E17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we initiate the study of the Chebyshev property of Abelian integrals generated by a non-generic turning point in planar slow-fast systems. Such Abelian integrals generalize the Abelian integrals produced by a slow-fast Hopf point (or generic turning point), introduced in Dumortier et al. (Discrete Contin Dyn Syst Ser S 2(4):723–781, 2009), and play an important role in studying the number of limit cycles born from the non-generic turning point.
引用
下载
收藏
相关论文
共 50 条
  • [1] Abelian Integrals and Non-generic Turning Points
    Huzak, Renato
    Rojas, David
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [2] Canard solutions at non-generic turning points
    De Maesschalck, P
    Dumortier, F
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (05) : 2291 - 2334
  • [3] Relaxation Oscillations in Singularly Perturbed Generalized Lienard Systems with Non-Generic Turning Points
    Hu, Huan
    Shen, Jianhe
    Zhou, Zheyan
    Ou, Zhonghui
    MATHEMATICAL MODELLING AND ANALYSIS, 2017, 22 (03) : 389 - 407
  • [4] THE ANALYTIC SVD: ON THE NON-GENERIC POINTS ON THE PATH
    Janovska, Dasa
    Janovsky, Vladimir
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2010, 37 : 70 - 86
  • [5] ON THE SATO-TATE CONJECTURE FOR NON-GENERIC ABELIAN SURFACES
    Johansson, Christian
    Fite, Francesc
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (09) : 6303 - 6325
  • [6] KIDs are non-generic
    Beig, R
    Chrusciel, PT
    Schoen, R
    ANNALES HENRI POINCARE, 2005, 6 (01): : 155 - 194
  • [7] On the Lang-Trotter conjecture for a class of non-generic abelian surfaces
    Amri, Mohammed Amin
    RAMANUJAN JOURNAL, 2024, 65 (01): : 69 - 79
  • [8] NON-GENERIC CUSPS
    Misiurewicz, Michal
    Rodrigues, Ana
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (07) : 3553 - 3572
  • [9] KIDs are Non-Generic
    Robert Beig
    Piotr T. Chruściel
    Richard Schoen
    Annales Henri Poincaré, 2005, 6 : 155 - 194
  • [10] GENERIC AND NON-GENERIC BIFURCATION FOR THE VONKARMAN EQUATIONS
    VANDERBAUWHEDE, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (03) : 550 - 573