Abelian Integrals and Non-generic Turning Points

被引:0
|
作者
Renato Huzak
David Rojas
机构
[1] Hasselt University,Departament d’Informàtica, Matemàtica Aplicada i Estadística
[2] Campus Diepenbeek,undefined
[3] Universitat de Girona,undefined
关键词
Abelian integrals; Chebyshev systems; Planar turning points; 34E15; 34E17;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we initiate the study of the Chebyshev property of Abelian integrals generated by a non-generic turning point in planar slow-fast systems. Such Abelian integrals generalize the Abelian integrals produced by a slow-fast Hopf point (or generic turning point), introduced in Dumortier et al. (Discrete Contin Dyn Syst Ser S 2(4):723–781, 2009), and play an important role in studying the number of limit cycles born from the non-generic turning point.
引用
下载
收藏
相关论文
共 50 条
  • [21] Existence of Canards under Non-generic Conditions
    Xie, Feng
    Han, Maoan
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2009, 30 (03) : 239 - 250
  • [22] The Relevance of Non-Generic Events in Scale Space Models
    Arjan Kuijper
    Luc M.J. Florack
    International Journal of Computer Vision, 2004, 57 : 67 - 84
  • [23] Effects of Generic versus Non-Generic Feedback on Motor Learning in Children
    Chiviacowsky, Suzete
    Drews, Ricardo
    PLOS ONE, 2014, 9 (02):
  • [24] Rational convexity of non-generic immersed Lagrangian submanifolds
    Julien Duval
    Damien Gayet
    Mathematische Annalen, 2009, 345 : 25 - 29
  • [25] Generic and non-generic conditions for the perception of surface shape from texture
    Todd, JT
    Oomes, AHJ
    VISION RESEARCH, 2002, 42 (07) : 837 - 850
  • [26] The influence of generic versus non-generic feedback on motor performance in children
    Chiviacowsky, Suzete
    Wulf, Gabriele
    Drews, Ricardo
    JOURNAL OF SPORT & EXERCISE PSYCHOLOGY, 2012, 34 : S77 - S77
  • [27] NON ABELIAN HARMONIC INTEGRALS
    GAVEAU, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (24): : 1205 - 1207
  • [28] NON ABELIAN HARMONIC INTEGRALS
    GAVEAU, B
    BULLETIN DES SCIENCES MATHEMATIQUES, 1982, 106 (02): : 113 - 169
  • [29] NON ABELIAN HARMONIC INTEGRALS
    GAVEAU, B
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1978, 286 (25): : 1239 - 1240
  • [30] Non-generic twinning concentrations for a class of active alloys
    Pitteri, M
    Zanzotto, G
    APPLIED AND INDUSTRIAL MATHEMATICS, VENICE-2, 1998, 2000, : 245 - 257