Tangential Center Problem for a Family of Non-generic Hamiltonians

被引:0
|
作者
Jessie Pontigo-Herrera
机构
[1] Universidad Nacional Autónoma de México (UNAM),Instituto de Matemáticas
[2] Université de Bourgogne,Institut de Mathématiques de Bourgogne, U.M.R. 5584 du C.N.R.S.
关键词
Abelian integrals; Tangential center problem; Monodromy; 34M35; 34C08; 14D05;
D O I
暂无
中图分类号
学科分类号
摘要
The tangential center problem was solved by Yu. S. Ilyashenko in the generic case Mat Sbornik (New Series), 78, 120, 3,360–373, (1969). With the aim of having well-understood models of non-generic Hamiltonians, we consider here a family of non-generic Hamiltonians, whose Hamiltonian is of the form F=∏fj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$F=\prod f_{j}$\end{document}, where fj are real polynomials of degree ≥ 1. For this family, the genericity assumption of transversality at infinity fails and the coincidence of the critical values for different critical points is allowed. We consider some geometric conditions on these polynomials in order to compute the orbit under monodromy of their vanishing cycles. Under those conditions, we provide a solution of the tangential center problem for this family.
引用
收藏
页码:597 / 622
页数:25
相关论文
共 50 条
  • [31] The monodromy problem and the tangential center problem
    C. Christopher
    P. Mardešić
    Functional Analysis and Its Applications, 2010, 44 : 22 - 35
  • [32] Conformally related Riemannian metrics with non-generic holonomy
    Moroianu, Andrei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 755 : 279 - 292
  • [33] Pseudo-Bautin bifurcation for a non-generic family of 3D Filippov systems
    Islas, Jose Manuel
    Castillo, Juan
    Verduzco, Fernando
    SYSTEMS & CONTROL LETTERS, 2024, 185
  • [34] Geometric analysis characterizes molecular rigidity in generic and non-generic protein configurations
    Budday, Dominik
    Leyendecker, Sigrid
    van den Bedem, Henry
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2015, 83 : 36 - 47
  • [35] Non-generic unramified representations in metaplectic covering groups
    David Ginzburg
    Israel Journal of Mathematics, 2018, 226 : 447 - 474
  • [36] Robustness study of generic and non-generic 3R positioning manipulators
    Caro, Stephane
    Wenger, Philippe
    Bennis, Fouad
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 7, PTS A AND B, 2005, : 315 - 324
  • [37] On the sensitivty of non-generic bifurcation of non-linear normal modes
    Pak, C. H.
    Choi, Y. S.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCE AND INFORMATION IN ENGINEERING CONFERENCE, VOL 1, PTS A-C, 2008, : 1495 - 1502
  • [38] Rational convexity of non-generic immersed Lagrangian submanifolds
    Duval, Julien
    Gayet, Damien
    MATHEMATISCHE ANNALEN, 2009, 345 (01) : 25 - 29
  • [39] Non-generic unramified representations in metaplectic covering groups
    Ginzburg, David
    ISRAEL JOURNAL OF MATHEMATICS, 2018, 226 (01) : 447 - 474
  • [40] The spectral dimension of non-generic branched polymer ensembles
    Correia, JD
    Wheater, JF
    PHYSICS LETTERS B, 1998, 422 (1-4) : 76 - 81