Pseudo-Bautin bifurcation for a non-generic family of 3D Filippov systems

被引:1
|
作者
Islas, Jose Manuel [1 ]
Castillo, Juan [2 ]
Verduzco, Fernando [2 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Queretaro 76230, Mexico
[2] Univ Sonora, Dept Matemat, Hermosillo 83000, Sonora, Mexico
关键词
Filippov system; Pseudo-Hopf bifurcation; Saddle-node bifurcation; Pseudo-Bautin bifurcation;
D O I
10.1016/j.sysconle.2024.105730
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the non-generic family of 3D piecewise linear systems, with a discontinuity plane that have two parallel tangency lines, such that the region between them is the sliding region. It is known that the change of stability of the sliding region gives rise to the called pseudo-Hopf bifurcation. The stability of the crossing limit cycle that emerges from this bifurcation mechanism is characterized by two control parameters. In this document we consider one of these control parameters as a bifurcation parameter and establish the existence of a curve of saddle-node bifurcation points for crossing limit cycles. When we put together this two bifurcation mechanisms in a two-parametric unfolding, we obtain the called pseudo-Bautin bifurcation, because the local geometry of the bifurcation curves in the bifurcation diagram is the same as the Bautin bifurcation for smooth dynamical systems. Finally, we apply this result to state feedback control systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Pseudo-Bautin Bifurcation in 3D Filippov Systems
    Castillo, Juan
    Verduzco, Fernando
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (08):
  • [2] Pseudo-Hopf Bifurcation for a Class of 3D Filippov Linear Systems
    Islas, Jose Manuel
    Castillo, Juan
    Aguirre-Hernandez, Baltazar
    Verduzco, Fernando
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (02):
  • [3] The pseudo-Hopf bifurcation and derived attractors in 3D Filippov linear systems with a Teixeira singularity
    Castillo, Juan
    CHAOS, 2020, 30 (11)
  • [4] Chains in 3D Filippov systems: A chaotic phenomenon
    Gomide, Otavio M. L.
    Teixeira, Marco A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 159 : 168 - 195
  • [5] On typical homoclinic-like loops in 3D Filippov systems
    Gomide, Otavio M. L.
    Teixeira, Marco A.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 307 : 444 - 475
  • [6] On structural stability of 3D Filippov systems: A semi-local approach
    Gomide, Otavio M. L.
    Teixeira, Marco A.
    MATHEMATISCHE ZEITSCHRIFT, 2020, 294 (1-2) : 419 - 449
  • [7] Hopf bifurcation at infinity in 3D Relay systems
    Freire, E.
    Ponce, E.
    Ros, J.
    Vela, E.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 444
  • [8] Chaotic Dynamics Arising from Sliding Heteroclinic Cycles in 3D Filippov Systems
    Yang, Qigui
    Huang, Yousu
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (01):
  • [9] Two-Parameter Bifurcations and Hidden Attractors in a Class of 3D Linear Filippov Systems
    Wei, Zhouchao
    Wang, Fanrui
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2024, 34 (04):
  • [10] Non-resonance 3D homoclinic bifurcation with an inclination flip
    Lu, Qiuying
    CHAOS SOLITONS & FRACTALS, 2009, 42 (05) : 2597 - 2605