On the 1d Cubic NLS with a Non-generic Potential

被引:0
|
作者
Chen, Gong [1 ]
Pusateri, Fabio [2 ]
机构
[1] Georgia Inst Technol, Sch Math, 686 Cherry St,Skiles Bldg, Atlanta, GA 30332 USA
[2] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
NONLINEAR SCHRODINGER-EQUATIONS; LONG-RANGE SCATTERING; INVERSE SCATTERING; OPERATORS; ASYMPTOTICS; DECAY; TIME; LINE;
D O I
10.1007/s00220-023-04894-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the 1d cubic nonlinear Schrodinger equation with an external potential V that is non-generic. Without making any parity assumption on the data, but assuming that the zero energy resonance of the associated Schrodinger operator is either odd or even, we prove global-in-time quantitative bounds and asymptotics for small solutions. First, we use a simple modification of the basis for the distorted Fourier transform (dFT) to resolve the (possible) discontinuity at zero energy due to the presence of a resonance and the absence of symmetry of the solution. We then use a refined analysis of the low frequency structure of the (modified) nonlinear spectral distribution, and employ smoothing estimates in the setting of non-generic potentials.
引用
收藏
页数:59
相关论文
共 50 条
  • [1] On the 1d Cubic NLS with a Non-generic Potential
    Gong Chen
    Fabio Pusateri
    Communications in Mathematical Physics, 2024, 405
  • [2] Non-generic blow-up solutions for the critical focusing NLS in 1-D
    Krieger, J.
    Schlag, W.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2009, 11 (01) : 1 - 125
  • [3] Blow-Up for the 1D Cubic NLS
    Valeria Banica
    Renato Lucà
    Nikolay Tzvetkov
    Luis Vega
    Communications in Mathematical Physics, 2024, 405
  • [4] Blow-Up for the 1D Cubic NLS
    Banica, Valeria
    Luca, Renato
    Tzvetkov, Nikolay
    Vega, Luis
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (01)
  • [5] Generic and non-generic cubic-to-monoclinic transitions and their twins
    Pitteri, M
    Zanzotto, G
    ACTA MATERIALIA, 1998, 46 (01) : 225 - 237
  • [6] On Modified Scattering for 1D Quadratic Klein-Gordon Equations With Non-Generic Potentials
    Lindblad, Hans
    Luhrmann, Jonas
    Schlag, Wilhelm
    Soffer, Avy
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (06) : 5118 - 5208
  • [7] Scattering for 1D cubic NLS and singular vortex dynamics
    Banica, Valeria
    Vega, Luis
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2012, 14 (01) : 209 - 253
  • [8] A Priori Bounds for the 1D Cubic NLS in Negative Sobolev Spaces
    Koch, Herbert
    Tataru, Daniel
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2007, 2007
  • [9] KIDs are non-generic
    Beig, R
    Chrusciel, PT
    Schoen, R
    ANNALES HENRI POINCARE, 2005, 6 (01): : 155 - 194
  • [10] NON-GENERIC CUSPS
    Misiurewicz, Michal
    Rodrigues, Ana
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (07) : 3553 - 3572