Threshold Dynamics in a Model for Zika Virus Disease with Seasonality

被引:0
|
作者
Mahmoud A. Ibrahim
Attila Dénes
机构
[1] University of Szeged,Bolyai Institute
[2] Mansoura University,Department of Mathematics, Faculty of Science
来源
关键词
Periodic epidemic model; Zika virus (ZIKV); Global stability; Uniform persistence;
D O I
暂无
中图分类号
学科分类号
摘要
We present a compartmental population model for the spread of Zika virus disease including sexual and vectorial transmission as well as asymptomatic carriers. We apply a non-autonomous model with time-dependent mosquito birth, death and biting rates to integrate the impact of the periodicity of weather on the spread of Zika. We define the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_{0}$$\end{document} as the spectral radius of a linear integral operator and show that the global dynamics is determined by this threshold parameter: If R0<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 < 1,$$\end{document} then the disease-free periodic solution is globally asymptotically stable, while if R0>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 > 1,$$\end{document} then the disease persists. We show numerical examples to study what kind of parameter changes might lead to a periodic recurrence of Zika.
引用
收藏
相关论文
共 50 条
  • [41] Threshold dynamics of a reaction-advection-diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity
    Wu, Peng
    Salmaniw, Yurij
    Wang, Xiunan
    JOURNAL OF MATHEMATICAL BIOLOGY, 2024, 88 (06)
  • [42] Threshold Dynamics for A Hand, Foot and Mouth Disease Model
    Huang, Yingfen
    Liu, Junli
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 114 - 120
  • [43] The dynamics of Zika virus with Caputo fractional derivative
    Khan, Muhammad Altaf
    Ullah, Saif
    Farhan, Muhammad
    AIMS MATHEMATICS, 2019, 4 (01): : 134 - 146
  • [44] Analysis of transmission dynamics for Zika virus on networks
    Li, Li
    Zhang, Jie
    Liu, Chen
    Zhang, Hong-Tao
    Wang, Yi
    Wang, Zhen
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 347 : 566 - 577
  • [45] THE EFFECTS OF VACCINATION TO THE DYNAMICS OF RUBELLA VIRUS WITH SEASONALITY
    Abadi
    Artiono, Rudianto
    Prawoto, Budi Priyo
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2020,
  • [46] Zika virus disease causes microcephaly
    Roy, Pritam
    NATIONAL MEDICAL JOURNAL OF INDIA, 2016, 29 (01): : 57 - 57
  • [47] The Ability of Zika virus Intravenous Immunoglobulin to Protect From or Enhance Zika Virus Disease
    Pinto, Amelia K.
    Hassert, Mariah
    Han, Xiaobing
    Barker, Douglas
    Carnelley, Trevor
    Branche, Emilie
    Steffen, Tara L.
    Stone, E. Taylor
    Geerling, Elizabeth
    Viramontes, Karla M.
    Nykiforuk, Cory
    Toth, Derek
    Shresta, Sujan
    Kodihalli, Shantha
    Brien, James D.
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [48] Zika virus: an emerging arboviral disease
    Arora, Neelima
    Banerjee, Amit K.
    Narasu, Mangamoori Lakshmi
    FUTURE VIROLOGY, 2016, 11 (06) : 395 - 399
  • [49] The effect of sexual transmission on Zika virus dynamics
    C. M. Saad-Roy
    Junling Ma
    P. van den Driessche
    Journal of Mathematical Biology, 2018, 77 : 1917 - 1941
  • [50] The effect of sexual transmission on Zika virus dynamics
    Saad-Roy, C. M.
    Ma, Junling
    van den Driessche, P.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (6-7) : 1917 - 1941