Threshold Dynamics in a Model for Zika Virus Disease with Seasonality

被引:0
|
作者
Mahmoud A. Ibrahim
Attila Dénes
机构
[1] University of Szeged,Bolyai Institute
[2] Mansoura University,Department of Mathematics, Faculty of Science
来源
关键词
Periodic epidemic model; Zika virus (ZIKV); Global stability; Uniform persistence;
D O I
暂无
中图分类号
学科分类号
摘要
We present a compartmental population model for the spread of Zika virus disease including sexual and vectorial transmission as well as asymptomatic carriers. We apply a non-autonomous model with time-dependent mosquito birth, death and biting rates to integrate the impact of the periodicity of weather on the spread of Zika. We define the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_{0}$$\end{document} as the spectral radius of a linear integral operator and show that the global dynamics is determined by this threshold parameter: If R0<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 < 1,$$\end{document} then the disease-free periodic solution is globally asymptotically stable, while if R0>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 > 1,$$\end{document} then the disease persists. We show numerical examples to study what kind of parameter changes might lead to a periodic recurrence of Zika.
引用
收藏
相关论文
共 50 条
  • [11] THE THRESHOLD DYNAMICS OF A WATERBORNE PATHOGEN MODEL WITH SEASONALITY IN A POLLUTED ENVIRONMENT
    支顺
    苏有慧
    牛红套
    强立忠
    Acta Mathematica Scientia, 2024, 44 (06) : 2165 - 2189
  • [12] Modeling Zika Virus Disease Dynamics with Control Strategies
    Helikumi, Mlyashimbi
    Lolika, Paride O.
    Makau, Kimulu Ancent
    Ndambuki, Muli Charles
    Mhlanga, Adquate
    INFORMATICS-BASEL, 2024, 11 (04):
  • [13] Translational Model of Zika Virus Disease in Baboons
    Gurung, Sunam
    Preno, Alisha N.
    Dubaut, Jamie P.
    Nadeau, Hugh
    Hyatt, Kimberly
    Reuter, Nicole
    Nehete, Bharti
    Wolf, Roman F.
    Nehete, Pramod
    Dittmer, Dirk P.
    Myers, Dean A.
    Papin, James F.
    JOURNAL OF VIROLOGY, 2018, 92 (16)
  • [14] Dynamics of a fractional order Zika virus model with mutant
    Ali, Aatif
    Islam, Saeed
    Khan, M. Riaz
    Rasheed, Saim
    Allehiany, F. M.
    Baili, Jamel
    Khan, Muhammad Altaf
    Ahmad, Hijaz
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (06) : 4821 - 4836
  • [15] Threshold dynamics of a reaction-advection-diffusion waterborne disease model with seasonality and human behavior change
    Wang, Wei
    Wang, Xiaotong
    Fan, Xiaoting
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [16] Seasonality and Zika Virus (ZIKV) Impact In Vitro Implantation in a Rhesus Macaque Model.
    Block, L.
    Aliota, M.
    Wang, X.
    Friedrich, T.
    Mean, K.
    Schotzko, M.
    Wenzel, A.
    Wipez, G.
    Golos, T.
    Schmidt, J. Kropp
    REPRODUCTIVE SCIENCES, 2019, 26 : 286A - 286A
  • [17] Threshold dynamics of a Zika model with environmental and sexual transmissions and spatial heterogeneity
    Wang, Liping
    Wu, Peng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [18] Threshold dynamics of a Zika model with environmental and sexual transmissions and spatial heterogeneity
    Liping Wang
    Peng Wu
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [19] Mathematical model for Zika virus dynamics with sexual transmission route
    Agusto, F. B.
    Bewick, S.
    Fagan, W. F.
    ECOLOGICAL COMPLEXITY, 2017, 29 : 61 - 81
  • [20] Zika Virus Disease
    Slenczka, Werner
    MICROBIOLOGY SPECTRUM, 2016, 4 (03):