Threshold Dynamics in a Model for Zika Virus Disease with Seasonality

被引:0
|
作者
Mahmoud A. Ibrahim
Attila Dénes
机构
[1] University of Szeged,Bolyai Institute
[2] Mansoura University,Department of Mathematics, Faculty of Science
来源
关键词
Periodic epidemic model; Zika virus (ZIKV); Global stability; Uniform persistence;
D O I
暂无
中图分类号
学科分类号
摘要
We present a compartmental population model for the spread of Zika virus disease including sexual and vectorial transmission as well as asymptomatic carriers. We apply a non-autonomous model with time-dependent mosquito birth, death and biting rates to integrate the impact of the periodicity of weather on the spread of Zika. We define the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_{0}$$\end{document} as the spectral radius of a linear integral operator and show that the global dynamics is determined by this threshold parameter: If R0<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 < 1,$$\end{document} then the disease-free periodic solution is globally asymptotically stable, while if R0>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 > 1,$$\end{document} then the disease persists. We show numerical examples to study what kind of parameter changes might lead to a periodic recurrence of Zika.
引用
收藏
相关论文
共 50 条
  • [31] Outbreak of Zika virus disease
    Wiwanitkit, Viroj
    JOURNAL OF RESEARCH IN MEDICAL SCIENCES, 2017, 22
  • [32] Zika Virus Disease for the Neurointensivist
    Pastula, Daniel M.
    Durrant, Julia C.
    Smith, Daniel E.
    Beckham, J. David
    Tyler, Kenneth L.
    NEUROCRITICAL CARE, 2017, 26 (03) : 457 - 463
  • [33] Global Stability of Zika Virus Dynamics
    Bates, Savannah
    Hutson, Hayley
    Rebaza, Jorge
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 657 - 672
  • [34] Zika virus disease for neurologists
    Smith, Daniel E.
    Beckham, J. David
    Tyler, Kenneth L.
    Pastula, Daniel M.
    NEUROLOGY-CLINICAL PRACTICE, 2016, 6 (06) : 515 - 522
  • [35] Threshold dynamics of reaction-diffusion partial differential equations model of Ebola virus disease
    Yamazaki, Kazuo
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2018, 11 (08)
  • [36] Modeling Zika Virus Transmission Dynamics: Parameter Estimates, Disease Characteristics, and Prevention
    Rahman, Munsur
    Bekele-Maxwell, Kidist
    Cates, LeAnna L.
    Banks, H. T.
    Vaidya, Naveen K.
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [37] Modeling Zika Virus Transmission Dynamics: Parameter Estimates, Disease Characteristics, and Prevention
    Munsur Rahman
    Kidist Bekele-Maxwell
    LeAnna L. Cates
    H. T. Banks
    Naveen K. Vaidya
    Scientific Reports, 9
  • [38] The SIR Model of Zika Virus Disease Outbreak in Brazil at Year 2015
    Aik, Lim Eng
    Kiang, Lam Chee
    Hong, Tan Wei
    Abu, Mohd Syafarudy
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EDUCATION, MATHEMATICS AND SCIENCE 2016 (ICEMS2016) IN CONJUNCTION WITH INTERNATIONAL POSTGRADUATE CONFERENCE ON SCIENCE AND MATHEMATICS 2016 (IPCSM2016), 2017, 1847
  • [39] Dynamics of fractional plant virus propagation model with influence of seasonality and intraspecific competition
    Achar, Sindhu J.
    Geetha, N. K.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (07) : 6415 - 6430
  • [40] Zika virus dynamics partial differential equations model with sexual transmission route
    Yamazaki, Kazuo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 50 : 290 - 315