Threshold Dynamics in a Model for Zika Virus Disease with Seasonality

被引:0
|
作者
Mahmoud A. Ibrahim
Attila Dénes
机构
[1] University of Szeged,Bolyai Institute
[2] Mansoura University,Department of Mathematics, Faculty of Science
来源
关键词
Periodic epidemic model; Zika virus (ZIKV); Global stability; Uniform persistence;
D O I
暂无
中图分类号
学科分类号
摘要
We present a compartmental population model for the spread of Zika virus disease including sexual and vectorial transmission as well as asymptomatic carriers. We apply a non-autonomous model with time-dependent mosquito birth, death and biting rates to integrate the impact of the periodicity of weather on the spread of Zika. We define the basic reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_{0}$$\end{document} as the spectral radius of a linear integral operator and show that the global dynamics is determined by this threshold parameter: If R0<1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 < 1,$$\end{document} then the disease-free periodic solution is globally asymptotically stable, while if R0>1,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {R}}_0 > 1,$$\end{document} then the disease persists. We show numerical examples to study what kind of parameter changes might lead to a periodic recurrence of Zika.
引用
收藏
相关论文
共 50 条
  • [21] On the dynamics of a Zika disease model with vector-bias
    Han, Mengjie
    Liu, Junli
    Zhang, Tailei
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2024,
  • [22] THRESHOLD DYNAMICS OF A REACTION-DIFFUSION CHOLERA MODEL WITH SEASONALITY AND NONLOCAL DELAY
    Wu, Wenjing
    Jiang, Tianli
    Liu, Weiwei
    Wang, Jinliang
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (10) : 3263 - 3282
  • [23] Caputo fractional order derivative model of Zika virus transmission dynamics
    Prasad, Ramakant
    Kumar, Kapil
    Dohare, Ravins
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 28 (02): : 145 - 157
  • [24] Dynamics and optimal control of a stochastic Zika virus model with spatial diffusion
    Shao, Minna
    Zhao, Hongyong
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (09) : 17520 - 17553
  • [25] Mathematical model of zika virus dynamics with vector control and sensitivity analysis
    Biswas, Sudhanshu Kumar
    Ghosh, Uttam
    Sarkar, Susmita
    INFECTIOUS DISEASE MODELLING, 2020, 5 : 23 - 41
  • [26] Dynamics of a Time-Delayed Lyme Disease Model with Seasonality
    Wang, Xiunan
    Zhao, Xiao-Qiang
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2017, 16 (02): : 853 - 881
  • [27] An Overview of Zika Virus Disease
    Pastula, Daniel M.
    Smith, Daniel E.
    Beckham, J. David
    Tyler, Kenneth L.
    NEUROHOSPITALIST, 2016, 6 (03): : 93 - 94
  • [28] Global Stability of Zika Virus Dynamics
    Savannah Bates
    Hayley Hutson
    Jorge Rebaza
    Differential Equations and Dynamical Systems, 2021, 29 : 657 - 672
  • [29] Zika Virus Disease for the Neurointensivist
    Daniel M. Pastula
    Julia C. Durrant
    Daniel E. Smith
    J. David Beckham
    Kenneth L. Tyler
    Neurocritical Care, 2017, 26 : 457 - 463
  • [30] Zika Virus and Neurologic Disease
    Reid, Savina
    Rimmer, Kathryn
    Thakur, Kiran
    NEUROLOGIC CLINICS, 2018, 36 (04) : 767 - +