The inverse problem of geometric and golden means of positive definite matrices

被引:0
|
作者
Hosoo Lee
Yongdo Lim
机构
[1] Kyungpook National University,Department of Mathematics
来源
Archiv der Mathematik | 2007年 / 88卷
关键词
15A24; 15A29; 15A48; Positive definite matrix; geometric means; golden mean; inverse problem; nonlinear matrix equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that the inverse mean problem of geometric and golden means of positive definite matrices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ \begin{aligned} & A = X\# Y\\ & B = \frac{1} {2}(X+X\# (4Y - 3X)) \end{aligned} \right. $$\end{document} is solvable (resp. uniquely solvable) if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A \leq{\sqrt {3}B} \leq 2A({\text{resp}}. A \leq {\sqrt {3}B} \leq{\sqrt {3}A}) $$\end{document}.
引用
收藏
页码:90 / 95
页数:5
相关论文
共 50 条
  • [1] The inverse problem of geometric and golden means of positive definite matrices
    Lee, Hosoo
    Lim, Yongdo
    [J]. ARCHIV DER MATHEMATIK, 2007, 88 (01) : 90 - 96
  • [2] Factorizations and geometric means of positive definite matrices
    Lim, Yongdo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2159 - 2172
  • [3] Norm inequalities for matrix geometric means of positive definite matrices
    Fujii, Jun Ichi
    Seo, Yuki
    Yamazaki, Takeaki
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03): : 512 - 526
  • [4] ON MEANS OF POSITIVE DEFINITE MATRICES
    TOLLIS, T
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1987, 37 (04) : 628 - 641
  • [5] Multi-variable weighted geometric means of positive definite matrices
    Lee, Hosoo
    Lim, Yongdo
    Yamazaki, Takeaki
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 307 - 322
  • [6] A new positive definite geometric mean of two positive definite matrices
    Fiedler, M
    Ptak, V
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 : 1 - 20
  • [7] Rank-preserving geometric means of positive semi-definite matrices
    Bonnabel, Silvere
    Collard, Anne
    Sepulchre, Rodolphe
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (08) : 3202 - 3216
  • [8] ON A GEOMETRIC PROPERTY OF POSITIVE DEFINITE MATRICES CONE
    Ito, Masatoshi
    Seo, Yuki
    Yamazaki, Takeaki
    Yanagida, Masahiro
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (02) : 64 - 76
  • [9] Geometric means in a novel vector space structure on symmetric positive-definite matrices
    Arsigny, Vincent
    Fillard, Pierre
    Pennec, Xavier
    Ayache, Nicholas
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) : 328 - 347
  • [10] The α-geometric structures on manifold of positive definite Hermite matrices
    Xiao Min Duan
    Hua Fei Sun
    Lin Yu Peng
    [J]. Acta Mathematica Sinica, English Series, 2014, 30 : 2137 - 2145