The inverse problem of geometric and golden means of positive definite matrices

被引:0
|
作者
Hosoo Lee
Yongdo Lim
机构
[1] Kyungpook National University,Department of Mathematics
来源
Archiv der Mathematik | 2007年 / 88卷
关键词
15A24; 15A29; 15A48; Positive definite matrix; geometric means; golden mean; inverse problem; nonlinear matrix equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that the inverse mean problem of geometric and golden means of positive definite matrices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ \begin{aligned} & A = X\# Y\\ & B = \frac{1} {2}(X+X\# (4Y - 3X)) \end{aligned} \right. $$\end{document} is solvable (resp. uniquely solvable) if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A \leq{\sqrt {3}B} \leq 2A({\text{resp}}. A \leq {\sqrt {3}B} \leq{\sqrt {3}A}) $$\end{document}.
引用
收藏
页码:90 / 95
页数:5
相关论文
共 50 条