The inverse problem of geometric and golden means of positive definite matrices

被引:0
|
作者
Hosoo Lee
Yongdo Lim
机构
[1] Kyungpook National University,Department of Mathematics
来源
Archiv der Mathematik | 2007年 / 88卷
关键词
15A24; 15A29; 15A48; Positive definite matrix; geometric means; golden mean; inverse problem; nonlinear matrix equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove that the inverse mean problem of geometric and golden means of positive definite matrices \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left\{ \begin{aligned} & A = X\# Y\\ & B = \frac{1} {2}(X+X\# (4Y - 3X)) \end{aligned} \right. $$\end{document} is solvable (resp. uniquely solvable) if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A \leq{\sqrt {3}B} \leq 2A({\text{resp}}. A \leq {\sqrt {3}B} \leq{\sqrt {3}A}) $$\end{document}.
引用
收藏
页码:90 / 95
页数:5
相关论文
共 50 条
  • [31] THE SOLVABILITY CONDITIONS FOR THE INVERSE PROBLEM OF SYMMETRIZABLE NONNEGATIVE DEFINITE MATRICES
    Hou, Jin-Jun
    Peng, Zhen-Yun
    Han, Xu-Li
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2005, 5 (01): : 163 - 172
  • [32] Weighted spectral geometric means and matrix equations of positive definite matrices involving semi-tensor products
    Ploymukda, Arnon
    Tansri, Kanjanaporn
    Chansangiam, Pattrawut
    AIMS MATHEMATICS, 2024, 9 (05): : 11452 - 11467
  • [33] The inverse mean problem of geometric and contraharmonic means
    Lim, Y
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 : 221 - 229
  • [35] POSITIVE DEFINITE MATRICES
    JOHNSON, CR
    AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (03): : 259 - &
  • [36] Positive Definite matrices
    Cobzas, S.
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2007, 52 (02): : 143 - 144
  • [37] Geometric properties of positive definite matrices cone with respect to the Thompson metric
    Ito, Masatoshi
    Seo, Yuki
    Yamazaki, Takeaki
    Yanagida, Masahiro
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (08) : 2054 - 2064
  • [38] POSITIVE DEFINITE MATRICES
    FOREGGER, T
    SMILEY, MF
    AMERICAN MATHEMATICAL MONTHLY, 1978, 85 (01): : 59 - 59
  • [39] Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices
    Congedo, Marco
    Afsari, Bijan
    Barachant, Alexandre
    Moakher, Maher
    PLOS ONE, 2015, 10 (04):
  • [40] Diagonal blocks of two mutually inverse positive definite block matrices
    Miroslav Fiedler
    Vlastimil Pták
    Czechoslovak Mathematical Journal, 1997, 47 : 127 - 134