Geometric Distance Between Positive Definite Matrices of Different Dimensions
被引:13
|
作者:
Lim, Lek-Heng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chicago, Dept Stat, Computat & Appl Math Initiat, Chicago, IL 60637 USAUniv Chicago, Dept Stat, Computat & Appl Math Initiat, Chicago, IL 60637 USA
Lim, Lek-Heng
[1
]
Sepulchre, Rodolphe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, EnglandUniv Chicago, Dept Stat, Computat & Appl Math Initiat, Chicago, IL 60637 USA
Sepulchre, Rodolphe
[2
]
Ye, Ke
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R ChinaUniv Chicago, Dept Stat, Computat & Appl Math Initiat, Chicago, IL 60637 USA
Ye, Ke
[3
]
机构:
[1] Univ Chicago, Dept Stat, Computat & Appl Math Initiat, Chicago, IL 60637 USA
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[3] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
We show how the geodesic distance on S-++(n), the cone of n x n real symmetric or complex Hermitian positive definite matrices regarded as a Riemannian manifold, may be used to naturally define a distance between two such matrices of different dimensions. Given that S-++(n) also parameterizes n-dimensional ellipsoids, inner products on R-n, and n x n covariances of nondegenerate probability distributions, this gives us a natural way to define a geometric distance between a pair of such objects of different dimensions.
机构:
Department of Mathematics,Beijing Institute of Technology
School of Science,Dalian Jiaotong UniversityDepartment of Mathematics,Beijing Institute of Technology
Xiao Min DUAN
Hua Fei SUN
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics,Beijing Institute of TechnologyDepartment of Mathematics,Beijing Institute of Technology