A new positive definite geometric mean of two positive definite matrices

被引:50
|
作者
Fiedler, M [1 ]
Ptak, V [1 ]
机构
[1] ACAD SCI CZECH REPUBL,INST MATH,CR-11567 PRAGUE 1,CZECH REPUBLIC
关键词
D O I
10.1016/0024-3795(95)00540-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and study a new positive definite (in certain singular cases, positive semidefinite) geometric mean of two positive definite (under certain conditions, positive semidefinite) matrices. (C) Elsevier Science Inc., 1997
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Geometric mean of partial positive definite matrices with missing entries
    Choi, Hayoung
    Kim, Sejong
    Shi, Yuanming
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (12): : 2408 - 2433
  • [2] A differential geometric approach to the geometric mean of symmetric positive-definite matrices
    Moakher, M
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (03) : 735 - 747
  • [4] Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices
    Congedo, Marco
    Afsari, Bijan
    Barachant, Alexandre
    Moakher, Maher
    [J]. PLOS ONE, 2015, 10 (04):
  • [5] Factorizations and geometric means of positive definite matrices
    Lim, Yongdo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2159 - 2172
  • [6] ON A GEOMETRIC PROPERTY OF POSITIVE DEFINITE MATRICES CONE
    Ito, Masatoshi
    Seo, Yuki
    Yamazaki, Takeaki
    Yanagida, Masahiro
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (02) : 64 - 76
  • [7] Weighted Carlson Mean of Positive Definite Matrices
    Lee, Hosoo
    [J]. KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (03): : 479 - 495
  • [8] Inequalities for the Wasserstein mean of positive definite matrices
    Bhatia, Rajendra
    Jain, Tanvi
    Lim, Yongdo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 576 : 108 - 123
  • [9] An Algorithm for Computing Geometric Mean of Two Hermitian Positive Definite Matrices via Matrix Sign
    Soleymani, F.
    Sharifi, M.
    Shateyi, S.
    Haghani, F. Khaksar
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [10] POSITIVE DEFINITE MATRICES
    JOHNSON, CR
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (03): : 259 - &