Norm inequalities for matrix geometric means of positive definite matrices

被引:7
|
作者
Fujii, Jun Ichi [1 ]
Seo, Yuki [2 ]
Yamazaki, Takeaki [3 ]
机构
[1] Osaka Kyoiku Univ, Dept Art & Sci Informat Sci, Osaka 543, Japan
[2] Osaka Kyoiku Univ, Dept Math Educ, Osaka 543, Japan
[3] Toyo Univ, Dept Elect Elect & Comp Engn, Saitama, Japan
来源
LINEAR & MULTILINEAR ALGEBRA | 2016年 / 64卷 / 03期
关键词
Karcher mean; chaotic geometric mean; matrix geometric mean; unitarily invariant norm; Kantorovich constant; Ando-Hiai inequality;
D O I
10.1080/03081087.2015.1051939
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain eigenvalue inequalities for matrix geometric means of positive definite matrices. This implies matrix norm inequalities for unitarily invariant norms, which are considered as complementary to a series of norm inequalities among geometric means. We give complements of the Ando-Hiai type inequality for the Karcher mean by means of the generalized Kantorovich constant. Finally, we consider the monotonicity of the eigenvalue function for the Karcher mean.
引用
收藏
页码:512 / 526
页数:15
相关论文
共 50 条