The inverse problem of geometric and golden means of positive definite matrices

被引:0
|
作者
Lee, Hosoo [1 ]
Lim, Yongdo [1 ]
机构
[1] Kyungpook Natl Univ, Dept Math, Taegu 702701, South Korea
关键词
positive definite matrix; geometric means; golden mean; inverse problem; nonlinear matrix equation;
D O I
10.1007/s00013-006-1934-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that the inverse mean problem of geometric and golden means of positive definite matrices {A = X # Y {B = (1)/(2)(X + X#(4Y - 3X)) is solvable (resp. uniquely solvable) if and only if A <= root 3B <= 2A (resp. A <= root 3B <= root 3A).
引用
收藏
页码:90 / 96
页数:7
相关论文
共 50 条
  • [1] The inverse problem of geometric and golden means of positive definite matrices
    Hosoo Lee
    Yongdo Lim
    [J]. Archiv der Mathematik, 2007, 88 : 90 - 95
  • [2] Factorizations and geometric means of positive definite matrices
    Lim, Yongdo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2159 - 2172
  • [3] Norm inequalities for matrix geometric means of positive definite matrices
    Fujii, Jun Ichi
    Seo, Yuki
    Yamazaki, Takeaki
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03): : 512 - 526
  • [4] ON MEANS OF POSITIVE DEFINITE MATRICES
    TOLLIS, T
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 1987, 37 (04) : 628 - 641
  • [5] Multi-variable weighted geometric means of positive definite matrices
    Lee, Hosoo
    Lim, Yongdo
    Yamazaki, Takeaki
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (02) : 307 - 322
  • [6] A new positive definite geometric mean of two positive definite matrices
    Fiedler, M
    Ptak, V
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 251 : 1 - 20
  • [7] Rank-preserving geometric means of positive semi-definite matrices
    Bonnabel, Silvere
    Collard, Anne
    Sepulchre, Rodolphe
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (08) : 3202 - 3216
  • [8] ON A GEOMETRIC PROPERTY OF POSITIVE DEFINITE MATRICES CONE
    Ito, Masatoshi
    Seo, Yuki
    Yamazaki, Takeaki
    Yanagida, Masahiro
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (02) : 64 - 76
  • [9] Geometric means in a novel vector space structure on symmetric positive-definite matrices
    Arsigny, Vincent
    Fillard, Pierre
    Pennec, Xavier
    Ayache, Nicholas
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2007, 29 (01) : 328 - 347
  • [10] The α-geometric structures on manifold of positive definite Hermite matrices
    Xiao Min Duan
    Hua Fei Sun
    Lin Yu Peng
    [J]. Acta Mathematica Sinica, English Series, 2014, 30 : 2137 - 2145