Microscopic model for FitzHugh-Nagumo dynamics

被引:25
|
作者
Malevanets, A
Kapral, R
机构
[1] Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, ON
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
D O I
10.1103/PhysRevE.55.5657
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A microscopic reaction model with a FitzHugh-Nagumo mass action law is introduced. A Markov chain that uses a birth-death description of the reaction mechanism and a random walk model for diffusion is constructed and implemented as a lattice-gas automaton. It is shown that the local particle density probability distribution is binomial in the high diffusion limit and the average particle density is governed by the FitzHugh-Nagumo reaction-diffusion equation. The lattice-gas simulations are able to reproduce phenomena such as labyrinthine patterns and Bloch fronts predicted to exist on the basis of the reaction-diffusion equation. The effects of fluctuations on these chemical patterns, the breakdown of the mass-action and reaction-diffusion descriptions, and the existence of phase transitions in the strong reaction limit are discussed.
引用
收藏
页码:5657 / 5670
页数:14
相关论文
共 50 条
  • [1] Effects of noise on the subthreshold dynamics of the FitzHugh-Nagumo model
    Di Garbo, A
    Barbi, M
    Chillemi, S
    [J]. STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 100 - 105
  • [2] Dynamics of nervous conduction via the FitzHugh-Nagumo Model
    Albuquerque de Assis, Thiago
    Vivas Miranda, Jose Garcia
    do Patrocinio Cavalcante, Silvia Larisse
    [J]. REVISTA BRASILEIRA DE ENSINO DE FISICA, 2010, 32 (01): : 1307.1 - 1307.10
  • [3] Stochastic dynamics of FitzHugh-Nagumo model near the canard explosion
    Shishkin, A
    Postnov, D
    [J]. 2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 649 - 653
  • [4] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [5] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    [J]. BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [6] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120
  • [7] Identification of the FitzHugh-Nagumo Model Dynamics via Deterministic Learning
    Dong, Xunde
    Wang, Cong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (12):
  • [8] Meromorphic solutions in the FitzHugh-Nagumo model
    Demina, Maria V.
    Kudryashov, Nikolay A.
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 82 : 18 - 23
  • [9] Dynamics of delayed and diffusive FitzHugh-Nagumo network
    Gao, Shaoyang
    Shen, Jianwei
    Hu, Xiaoyan
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [10] Dynamics of synaptically coupled FitzHugh-Nagumo neurons
    Goetze, Felix
    Lai, Pik-Yin
    [J]. CHINESE JOURNAL OF PHYSICS, 2022, 77 : 1365 - 1380