Dynamics of nervous conduction via the FitzHugh-Nagumo Model

被引:0
|
作者
Albuquerque de Assis, Thiago [1 ]
Vivas Miranda, Jose Garcia [2 ]
do Patrocinio Cavalcante, Silvia Larisse [3 ]
机构
[1] Univ Politecn Madrid, Dept Fis & Mecan ETSI Agronomos, Grp Sistemas Complejos, Madrid, Spain
[2] Univ Fed Bahia, Inst Fis, Dept Fis Terra & Meio Ambiente, Salvador, BA, Brazil
[3] Univ Autonoma Madrid, Dept Psicol Evolut & Educ, Madrid, Spain
来源
关键词
differential equations; nonlinearity; phase space;
D O I
10.1590/S1806-11172010000100007
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
The transmission mechanism of the electric impulses in a nerve cell is completely different from the mechanism of electronic conduction in metals. However, physics has an important role in explaining the dynamics of this process. In this work, we discuss some characteristics of these specialized cells. For this, we use the differential equation model of FitzHugh-Nagumo, especially in the analysis of the fixed points, stabilities and bifurcations. The main characteristics of the synaptic pulse propagation mechanism at a neuron, are shown in a simplest scenario to make possible the comprehension of the excitability phenomenon, in a geometrical context. Therefore, the analysis of the phase space is a fundamental item for the visual comprehension of the dynamic of nerve impulse propagation.
引用
收藏
页码:1307.1 / 1307.10
页数:10
相关论文
共 50 条
  • [1] Microscopic model for FitzHugh-Nagumo dynamics
    Malevanets, A
    Kapral, R
    [J]. PHYSICAL REVIEW E, 1997, 55 (05): : 5657 - 5670
  • [2] Identification of the FitzHugh-Nagumo Model Dynamics via Deterministic Learning
    Dong, Xunde
    Wang, Cong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (12):
  • [3] Effects of noise on the subthreshold dynamics of the FitzHugh-Nagumo model
    Di Garbo, A
    Barbi, M
    Chillemi, S
    [J]. STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 100 - 105
  • [4] Stochastic dynamics of FitzHugh-Nagumo model near the canard explosion
    Shishkin, A
    Postnov, D
    [J]. 2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 649 - 653
  • [5] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [6] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    [J]. BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [7] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120
  • [8] Meromorphic solutions in the FitzHugh-Nagumo model
    Demina, Maria V.
    Kudryashov, Nikolay A.
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 82 : 18 - 23
  • [9] Dynamics of delayed and diffusive FitzHugh-Nagumo network
    Gao, Shaoyang
    Shen, Jianwei
    Hu, Xiaoyan
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2024,
  • [10] Dynamics of synaptically coupled FitzHugh-Nagumo neurons
    Goetze, Felix
    Lai, Pik-Yin
    [J]. CHINESE JOURNAL OF PHYSICS, 2022, 77 : 1365 - 1380