Identification of the FitzHugh-Nagumo Model Dynamics via Deterministic Learning

被引:4
|
作者
Dong, Xunde [1 ,2 ]
Wang, Cong [1 ,3 ]
机构
[1] S China Univ Technol, Coll Automat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] S China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[3] S China Univ Technol, Guangdong Prov Key Lab Biomed Engn, Guangzhou 510006, Guangdong, Peoples R China
来源
关键词
FitzHugh-Nagumo; dynamics; identification; deterministic learning; SPIRAL WAVES; TRANSITION; SYSTEM;
D O I
10.1142/S021812741550159X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new method is proposed for the identification of the FitzHugh-Nagumo (FHN) model dynamics via deterministic learning. The FHN model is a classic and simple model for studying spiral waves in excitable media, such as the cardiac tissue, biological neural networks. Firstly, the FHN model described by partial differential equations (PDEs) is transformed into a set of ordinary differential equations (ODEs) by using finite difference method. Secondly, the dynamics of the ODEs is identified using the deterministic learning theory. It is shown that, for the spiral waves generated by the FHN model, the dynamics underlying the recurrent trajectory corresponding to any spatial point can be accurately identified by using the proposed approach. Numerical experiments are included to demonstrate the effectiveness of the proposed method.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Global Identification of FitzHugh-Nagumo Equation via Deterministic Learning and Interpolation
    Dong, Xunde
    Si, Wenjie
    Wang, Cong
    [J]. IEEE ACCESS, 2019, 7 : 107334 - 107345
  • [2] Dynamics of nervous conduction via the FitzHugh-Nagumo Model
    Albuquerque de Assis, Thiago
    Vivas Miranda, Jose Garcia
    do Patrocinio Cavalcante, Silvia Larisse
    [J]. REVISTA BRASILEIRA DE ENSINO DE FISICA, 2010, 32 (01): : 1307.1 - 1307.10
  • [3] Generalized FitzHugh-Nagumo model with tristable dynamics: Deterministic and stochastic bifurcations
    Nkounga, I. B. Tagne
    Xia, Yibo
    Yanchuk, Serhiy
    Yamapi, R.
    Kurths, Juergen
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 175
  • [4] Microscopic model for FitzHugh-Nagumo dynamics
    Malevanets, A
    Kapral, R
    [J]. PHYSICAL REVIEW E, 1997, 55 (05): : 5657 - 5670
  • [5] Deterministic and Stochastic FitzHugh-Nagumo Systems
    Thieullen, Michele
    [J]. STOCHASTIC BIOMATHEMATICAL MODELS: WITH APPLICATIONS TO NEURONAL MODELING, 2013, 2058 : 175 - 186
  • [6] Effects of noise on the subthreshold dynamics of the FitzHugh-Nagumo model
    Di Garbo, A
    Barbi, M
    Chillemi, S
    [J]. STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 100 - 105
  • [7] Stochastic dynamics of FitzHugh-Nagumo model near the canard explosion
    Shishkin, A
    Postnov, D
    [J]. 2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 649 - 653
  • [8] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9
  • [9] Global bifurcations in FitzHugh-Nagumo model
    Georgescu, A
    Rocsoreanu, C
    Giurgiteanu, N
    [J]. BIFURCATION, SYMMETRY AND PATTERNS, 2003, : 197 - 202
  • [10] Electronic Model of FitzHugh-Nagumo Neuron
    Petrovas, A.
    Lisauskas, S.
    Slepikas, A.
    [J]. ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 122 (06) : 117 - 120